Accès gratuit
Numéro
Med Sci (Paris)
Volume 27, Numéro 6-7, Juin–Juillet 2011
Page(s) 626 - 631
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2011276015
Publié en ligne 1 juillet 2011
  1. TakahashiM, RapleyE, BiggsPJ, et al. Linkage and LOH studies in 19 cylindromatosis families show no evidence of genetic heterogeneity and refine the CYLD locus on chromosome 16q12–q13. Hum Genet 2000 ; 106 : 58-65. [CrossRef] [PubMed] [Google Scholar]
  2. BignellGR, WarrenW, SealS, et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet 2000 ; 25 : 160-165. [CrossRef] [PubMed] [Google Scholar]
  3. Poblete GutiérrezP, EggermannT, HöllerD, et al. Phenotype diversity in familial cylindromatosis: a frameshift mutation in the tumor suppressor gene CYLD underlies different tumors of skin appendages. J Invest Dermatol 2002 ; 119 : 527-531. [CrossRef] [PubMed] [Google Scholar]
  4. ZhengG, HuL, HuangW, LDCY, et al. CYLD mutation causes multiple familial trichoepithelioma in three Chinese familiesHum Mutat 2004 ; 23 : 400. [CrossRef] [Google Scholar]
  5. PickartCM, EddinsMJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 2004 ; 1695 : 55-72. [CrossRef] [PubMed] [Google Scholar]
  6. WingetJM, MayorT. The diversity of ubiquitin recognition : hot spots and varied specificity. Mol Cell 2010 ; 38 : 627-635. [CrossRef] [PubMed] [Google Scholar]
  7. SteinmetzMO, AkhmanovaA. Capturing protein tails by CAP-Gly domains. Trends Biochem Sci 2008 ; 33 : 535-545. [CrossRef] [PubMed] [Google Scholar]
  8. TrompoukiE, HatzivassiliouE, TsichritzisT, et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 2003 ; 424 : 793-796. [CrossRef] [PubMed] [Google Scholar]
  9. KovalenkoA, Chable-BessiaC, CantarellaG, et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 2003 ; 424 : 801-805. [CrossRef] [PubMed] [Google Scholar]
  10. BrummelkampTR, NijmanSM, DiracAM, et al. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 2003 ; 424 : 797-801. [CrossRef] [PubMed] [Google Scholar]
  11. ReileyW, ZhangM, SunSC. Negative regulation of JNK signaling by the tumor suppressor CYLD. J Biol Chem 2004 ; 279 : 55161-55167. [CrossRef] [PubMed] [Google Scholar]
  12. StegmeierF, SowaME, NalepaG, et al. The tumor suppressor CYLD regulates entry into mitosis. Proc Natl Acad Sci USA 2007 ; 104 : 8869-8874. [CrossRef] [Google Scholar]
  13. HitomiJ, ChristoffersonDE, NgA, et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 2008 ; 135 : 1311-1323. [CrossRef] [PubMed] [Google Scholar]
  14. TaurielloDV, HaegebarthA, KuperI, et al. Loss of the tumor suppressor CYLD enhances Wnt/β-catenin signaling through K63-linked ubiquitination of Dvl. Mol Cell 2010 ; 37 : 607-619. [CrossRef] [PubMed] [Google Scholar]
  15. SunSC. CYLD: a tumor suppressor deubiquitinase regulating NF-κB activation and diverse biological processes. Cell Death Differ 2010 ; 17 : 25-34. [CrossRef] [PubMed] [Google Scholar]
  16. PoserI, DomínguezD, de HerrerosAG, et al. Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem 2001 ; 276 : 24661-24666. [CrossRef] [PubMed] [Google Scholar]
  17. MassoumiR, KuphalS, HellerbrandC, et al. Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma. J Exp Med 2009 ; 206 : 221-232. [CrossRef] [PubMed] [Google Scholar]
  18. AmiriKI, RichmondA. Role of NF-κB in melanoma. Cancer Metastasis Rev 2005 ; 24 : 301-313. [CrossRef] [PubMed] [Google Scholar]
  19. EspinosaL, CathelinS, D’AltriT, et al. The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia. Cancer Cell 2010 ; 18 : 268-281. [CrossRef] [PubMed] [Google Scholar]
  20. HirschHA, IliopoulosD, JoshiA, et al. A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. Cancer Cell 2010 ; 17 : 348-361. [CrossRef] [PubMed] [Google Scholar]
  21. IliopoulosD, JaegerSA, HirschHA, et al. STAT3 activation of miR-21 and miR-181b–1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 2010 ; 39 : 493-506. [CrossRef] [PubMed] [Google Scholar]
  22. AnJ, MoD, LiuH, et al. Inactivation of the CYLD deubiquitinase by HPV E6 mediates hypoxia-induced NF-κB activation. Cancer Cell 2008 ; 14 : 394-407. [CrossRef] [PubMed] [Google Scholar]
  23. BoehmJS, ZhaoJJ, YaoJ, et al. Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell 2007 ; 129 : 1065-1079. [CrossRef] [PubMed] [Google Scholar]
  24. HuttiJE, ShenRR, AbbottDW, et al. Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKε promotes cell transformation. Mol Cell 2009 ; 34 : 461-472. [CrossRef] [PubMed] [Google Scholar]
  25. ReileyW, ZhangM, WuX, et al. Regulation of the deubiquitinating enzyme CYLD by IκB kinase γ-dependent phosphorylation. Mol Cell Biol 2005 ; 25 : 3886-3895. [CrossRef] [PubMed] [Google Scholar]
  26. AnnunziataCM, DavisRE, DemchenkoY, et al. Frequent engagement of the classical and alternative NF-κ pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007 ; 12 : 115-130. [CrossRef] [PubMed] [Google Scholar]
  27. SchmidtA, SchmitzR, GiefingM, et al. Rare occurrence of biallelic CYLD gene mutations in classical Hodgkin lymphoma. Genes Chromosomes Cancer 2010 ; 49 : 803-809. [PubMed] [Google Scholar]
  28. MassoumiR. Ubiquitin chain cleavage: CYLD at work. Trends Biochem Sci 2010 ; 35 : 392-399. [CrossRef] [PubMed] [Google Scholar]
  29. HaydenMS, GhoshS. Shared principles in NF-κB signaling. Cell 2008 ; 132 : 344-362. [CrossRef] [PubMed] [Google Scholar]
  30. GautheronJ, CourtoisG. New functions of NEMO, the regulatory subunit of IKK. Med Sci (Paris) 2008 ; 24 : 954-959. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  31. KastnerP, ChanS. Notch activation during T-cell leukemogenesis in Ikaros-deficient mice. Med Sci (Paris) 2006 ; 22 : 708-710. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. GrandvauxN. La kinase IKKε : de l’oncogenèse à la résistance au traitement du cancer du sein. Med Sci (Paris) 2011 ; 27 : 619-625. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.