Accès gratuit
Numéro
Med Sci (Paris)
Volume 26, Numéro 12, Décembre 2010
Page(s) 1061 - 1066
Section M/S revues
DOI https://doi.org/10.1051/medsci/201026121061
Publié en ligne 15 décembre 2010
  1. D’Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006 ; 24 : 1392-401. [Google Scholar]
  2. Hay DC, Fletcher J, Payne C, et al. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proc Natl Acad Sci USA 2008 ; 105 : 12301-6. [Google Scholar]
  3. Cai J, Zhao Y, Liu Y, et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 2007 ; 45 : 1229-39. [Google Scholar]
  4. Si-Tayeb K, Noto FK, Nagaoka M, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 2010 ; 51 : 297-305. [Google Scholar]
  5. Hay DC, Zhao D, Fletcher J, et al. Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells 2008 ; 26 : 894-902. [Google Scholar]
  6. Basma H, Soto-Gutierrez A, Yannam GR, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology 2009 ; 136 : 990-9. [Google Scholar]
  7. Touboul T, Hannan NR, Corbineau S, et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 2010 (sous presse). [Google Scholar]
  8. McLean AB, D’Amour KA, Jones KL, et al. Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 2007 ; 25 : 29-38. [Google Scholar]
  9. Vallier L, Touboul T, Chng Z, et al. Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One 2009 ; : e6082. [Google Scholar]
  10. Zaret KS. Genetic programming of liver and pancreas progenitors : lessons for stem-cell differentiation. Nat Rev Genet 2008 ; 9 : 329-40. [Google Scholar]
  11. Berg T, Rountree CB, Lee L, et al. Fibroblast growth factor 10 is critical for liver growth during embryogenesis and controls hepatoblast survival via beta-catenin activation. Hepatology 2007 ; 46 : 1187-97. [Google Scholar]
  12. Schmelzer E, Zhang L, Bruce A, et al. Human hepatic stem cells from fetal and postnatal donors. J Exp Med 2007 ; 204 : 1973-87. [Google Scholar]
  13. Odom DT, Zizlsperger N, Gordon DB, et al. Control of pancreas and liver gene expression by HNF transcription factors. Science 2004 ; 303 : 1378-81. [Google Scholar]
  14. Bachoud-Levi AC, Gaura V, Brugieres P, et al. Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery : a long-term follow-up study. Lancet Neurol 2006 ; 5 : 303-9. [Google Scholar]
  15. Mahieu-Caputo D, Allain JE, Branger J, et al. Repopulation of athymic mouse liver by cryopreserved early human fetal hepatoblasts. Hum Gene Ther 2004 ; 15 : 1219-28. [Google Scholar]
  16. Carr AJ, Vugler AA, Hikita ST, et al. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One 2009 ; 4 : e8152. [Google Scholar]
  17. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 ; 126 : 663-76. [Google Scholar]
  18. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007 ; 131 : 861-72. [Google Scholar]
  19. Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 2008 ; 321 : 699-702. [Google Scholar]
  20. Robbins RD, Prasain N, Maier BF, et al. Inducible pluripotent stem cells : not quite ready for prime time? Curr Opin Organ Transplant 2010 ; 15 : 61-7. [Google Scholar]
  21. Montini E, Cesana D, Schmidt M, et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 2009 ; 119 : 964-75. [Google Scholar]
  22. Jalving M, Shepers H. Induced pluripotent stem cells : will they be safe? Curr Opin Mol Ther 2009 ; 11 : 383-93. [Google Scholar]
  23. Viswanathan SR, Powers JT, Einhorn W, et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 2009 ; 41 : 843-8. [Google Scholar]
  24. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007 ; 448 : 313-7. [Google Scholar]
  25. Doi A, Park IH, Wen B, et al. Differential methylation of tissue- and cancerspecific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 2009 ; 41 : 1350-3. [Google Scholar]
  26. Yamanaka S. A fresh look at iPS cells. Cell 2009 ; 137 : 13-7. [Google Scholar]
  27. Coulombel L. Pluripotence : une définition à géométrie variable. Med Sci (Paris) 2009 ; 25 : 798-801. [Google Scholar]
  28. Lin T, Ambasudhan R, Yuan X, et al. A chemical platform for improved induction of human iPSCs. Nat Methods 2009 ; 6 : 805-8. [Google Scholar]
  29. Vallier L, Touboul T, Brown S, et al. Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells. Stem Cells 2009 ; 27 : 2655-66. [Google Scholar]
  30. Rashid ST, Corbineau S, Hannan N, et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest 2010 ; 120 : 3127-36. [Google Scholar]
  31. Thorgeirsson SS, Grisham JW. Hematopoietic cells as hepatocyte stem cells : a critical review of the evidence. Hepatology 2006 ; 43 : 2-8. [Google Scholar]
  32. Fujino H, Hiramatsu H, Tsuchiya A, et al. Human cord blood CD34+ cells develop into hepatocytes in the livers of NOD/SCID/gamma(c)null mice through cell fusion. FASEB J 2007 ; 21 : 3499-510. [Google Scholar]
  33. van Poll D, Parekkadan B, Cho CH, et al. Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology 2008 ; 47 : 1634-43. [Google Scholar]
  34. Banas A, Teratani T, Yamamoto Y, et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 2007 ; 46 : 219-28. [Google Scholar]
  35. Tsai PC, Fu TW, Chen YM, et al. The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transpl 2009 ; 15 : 484-95. [Google Scholar]
  36. Yan Y, Xu W, Qian H, et al. Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo. Liver Int 2009 ; 29 : 356-65. [Google Scholar]
  37. Banas A, Teratani T, Yamamoto Y, et al. Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure. J Gastroenterol Hepatol 2009 ; 24 : 70-7. [Google Scholar]
  38. Bernardo ME, Zaffaroni N, Novara F, et al. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 2007 ; 67 : 9142-9. [Google Scholar]
  39. Wagner W, Bork S, Horn P, et al. Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One 2009 ; 4 : e5846. [Google Scholar]
  40. Wang X, Foster M, Al-Dhalimy M, et al. The origin and liver repopulating capacity of murine oval cells. Proc Natl Acad Sci USA 2003 ; 100 (suppl 1) : 11881-8. [Google Scholar]
  41. Wauthier E, Schmelzer E, Turner W, et al. Hepatic stem cells and hepatoblasts : identification, isolation, and ex vivo maintenance. Methods Cell Biol 2008 ; 86 : 137-225. [Google Scholar]
  42. Schmelzer E, Reid LM. Human telomerase activity, telomerase and telomeric template expression in hepatic stem cells and in livers from fetal and postnatal donors. Eur J Gastroenterol Hepatol 2009 ; 21 : 1191-8. [Google Scholar]
  43. Gires O. EpCAM, une protéine versatile impliquée dans l’oncogenèse. Med Sci (Paris) 2009 ; 25 : 449-50. [Google Scholar]
  44. Coulombel L. Coup de coeur pour un progéniteur multipotent mésodermique dérivé de cellules souches embryonnaires humaines. Med Sci (Paris) 2010 ; 26 : 439-41. [Google Scholar]
  45. Coulombel L. Reprogrammation nucléaire d’une cellule différenciée : on efface tout et on recommence. Med Sci (Paris) 2007 ; 23 : 667-70. [Google Scholar]
  46. Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 2009 ; 25 : 221-51. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.