Accès gratuit
Numéro
Med Sci (Paris)
Volume 26, Numéro 1, Janvier 2010
Page(s) 57 - 64
Section Biologie des systèmes
DOI https://doi.org/10.1051/medsci/201026157
Publié en ligne 15 janvier 2010
  1. Rudy Y. From genetics to cellular function using computational biology. Ann NY Acad Sci 2004; 1015 : 261–70. [Google Scholar]
  2. Hunter PJ, Borg TK. Integration from proteins to organs: the Physiome Project. Nat Rev Mol Cell Biol 2003; 4 : 237–43. [Google Scholar]
  3. Brook BS, Waters SL. Mathematical challenges in integrative physiology. J Math Biol 2008; 56 : 893–6. [Google Scholar]
  4. Restrepo JG, Weiss JN, Karma A. Calsequestrin-mediated mechanism for cellular calcium alternans. Biophys J 2008; 95 : 3767–89. [Google Scholar]
  5. Saucerman J, Zhang J, Martin JC, et al. System analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes. Proc Natl Acad Sci USA 2006; 103 :12923–8. [Google Scholar]
  6. Austin TM, Hooks DA, Hunter PJ, et al. Modeling cardiac electrical activity at the cell and tissue levels. Ann NY Acad Sci 2006; 1080 : 334–47. [Google Scholar]
  7. Moe GK, Rheinbolt WC, Abildskov JA. A computer model of atrial fibrillation. Am Heart J 1964; 67 : 200–20. [Google Scholar]
  8. Xie F, Qu Z, Garfinkel A, Weiss JN. Electrical refractory period restitution and spiral wave reentry in simulated cardiac tissue. Am J Physiol Heart Circ Physiol 2002; 283 : H448–60. [Google Scholar]
  9. Comtois P, Sakabe M, Vigmond EJ, et al. Mechanisms of atrial fibrillation termination by rapidly unbinding Na+ channel blockers: insights from mathematical models and experimental correlates. Am J Physiol 2008; 295 : H1489–504. [Google Scholar]
  10. Kléber AG, Rudy Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 2004; 84 : 431–88. [Google Scholar]
  11. Lim ZY, Maskara B, Aguel F, et al. Spiral wave attachment to millimeter-sized obstacles. Circulation 2006; 114 : 2113–21. [Google Scholar]
  12. Ikeda T, Yashima M, Uchida T, et al. Attachment of meandering reentrant wave fronts to anatomic obstacles in the atrium. Role of obstacle size. Circ Res 1997; 81 : 753–64. [Google Scholar]
  13. Li D, Fareh S, Leung TK, et al. Promotion of atrial fibrillation by heart failure in dogs: atrial remodelling of a different sort. Circulation 1999; 100 : 87–95. [Google Scholar]
  14. Hanna N, Cardin S, Leung TK, et al. Differences in atrial versus ventricular remodelling in dogs with ventricular tachypacing-induced congestive heart failure. Cardiovasc Res 2004; 63 : 236–44. [Google Scholar]
  15. Pastore JM, Rosenbaum DS. Role of structural barriers in the mechanism of alternans-induced reentry. Circ Res 2000; 87 : 1157–63. [Google Scholar]
  16. Comtois P, Vinet A. Curvature effects on activation speed and repolarization in an ionic model of cardiac myocytes. Phys Rev E 1999; 60 : 4619–28. [Google Scholar]
  17. Sampson KJ, Henriquez CS. Interplay of ionic and structural heterogeneity on functional action potential duration gradients: Implications for arrhythmogenesis. Chaos 2002; 12 : 819–28. [Google Scholar]
  18. Ten Tusscher KHWJ, Panfilov AV. Influence of non excitable cells on spiral breakup in two-dimensional and three-dimensional excitable media. Phys Rev E 2003; 68 : 062902. [Google Scholar]
  19. Ten Tusscher KHWJ, Panfilov AV. Wave propagation in excitable media with randomly distributed obstacles. Multiscale Modeling Simulation 2005; 3 : 265–82. [Google Scholar]
  20. Malik M, Camm AJ. Components of heart rate variability- what they mean and what we really measure. Am J Cardiol 1993; 72 : 821–22. [Google Scholar]
  21. Ghosh S, Rhee EK, Avari JN, et al. Cardiac memory in patients with Wolff-Parkinson-White syndrome; noninvasive imaging of activation and repolarization before and after catheter ablation. Circulation 2008; 118 : 907–15. [Google Scholar]
  22. Potse M, Coronel R, Leblanc AR, Vinet A. The role of extracellular potassium transport in computer models of the ischaemic zone. Med Biol Eng Comput 2007; 45 : 1187–99. [Google Scholar]
  23. Henriquez CS. Simulating the electrical behavior of cardiac tissue using the bidomain model. CRC Crit Rev Biomed Eng 1993; 21 : 1–77. [Google Scholar]
  24. Plank G, Zhou L, Greenstein JL, et al. From mitochondrial ion channels to arrhythmias in the heart: Computational techniques to bridge the spatio-temporal scales. Philos Transact A Math Phys Eng Sci 2008; 366 : 3381–409. [Google Scholar]
  25. Potse M, Dubé B, Richer J, et al. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans Biomed Eng 2006; 53 : 2425–35. [Google Scholar]
  26. Potse M, Baroudi G, Lanfranchi PA, et al. Generation of the T wave in the electrocardiogram: lessons to be learned from long-QT syndromes. Can J Cardiol 2007; 23 : 238C. [Google Scholar]
  27. Miller WT, Geselowitz DB. Simulation studies of the electrocardiogram; I. The normal heart. Circ Res 1978; 43 : 301–15. [Google Scholar]
  28. Sideman S. The challenge of cardiac modeling-interaction and integration. Ann NY Acad Sci 2006; 1080 : XI-XXIII. [Google Scholar]
  29. Reumann R, Gurev N, Rice JJ. Computational modeling of cardiac disease: potential for personalized medicine. Personnalized Med 2009 : 45–66. [Google Scholar]
  30. Vinet A, Chialvo DR, Michaels DC, Jalife J. Nonlinear dynamics of rate-dependent activation in models of single cardiac cells. Circ Res 1990; 67 : 1510–24. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.