Numéro
Med Sci (Paris)
Volume 25, Numéro 3, Mars 2009
Arche de Noé immunologique
Page(s) 273 - 280
Section M/S revues
DOI https://doi.org/10.1051/medsci/2009253273
Publié en ligne 15 mars 2009
  1. Flajnik MF, Du Pasquier L. Evolution of the immune system. In : Paul WE, ed. Fundamental immunology, 6th ed. Philadelphia : Wolters Kluver-Lippincott-Williams and Wilkins,2008 : 56–124. [Google Scholar]
  2. Rairdan G, Moffett P. Brothers in arms ? Common and contrasting themes in pathogen perception by plant NB-LRR and animal NACHT-LRR proteins. Microbes Infect 2007 :9 : 677–86. [Google Scholar]
  3. Pancer Z, Cooper MD. The evolution of adaptive immunity. Annu Rev Immunol 2006;24 : 497–518. [Google Scholar]
  4. Barclay AN, Brown MH, Law SKA, et al. The leukocyte antigen. Facts Book. San Diego : Academic Press Harcourt-Brace and Co, 1997 : 614 p. [Google Scholar]
  5. Ferrandon D, Imler JL, Hoffmann JA. Sensing infection in Drosophila : Toll and beyond. Semin Immunol 2004; 16 : 43–53. [Google Scholar]
  6. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol 2005; 17 : 1–14. [Google Scholar]
  7. Rast JP, Messier-Solek C. Marine invertebrate genome sequences and our evolving understanding of animal immunity. Biol Bull 2008; 214 : 274–83. [Google Scholar]
  8. Sambrook JG, Bashirova A, Palmer S, et al. Single haplotype analysis demonstrates rapid evolution of the killer immunoglobulin-like receptor (KIR) loci in primates. Genome Res 2005; 15 : 25–35. [Google Scholar]
  9. Stafford JL, Bengtén E, Du Pasquier L, et al. A novel family of diversified immunoregulatory receptors in teleosts is homologous to both mammalian Fc receptors and molecules encoded within the leukocyte receptor complex. Immunogenetics 2006; 58 : 758–73. [Google Scholar]
  10. Litman GW, Hawke NA, Yoder JA. Novel immune-type receptor genes. Immunol Rev 2001; 181 : 250–9. [Google Scholar]
  11. Guselnikov SV, Ramanayake T, Erilova AY, et al. The Xenopus FcR family demonstrates continually high diversification of paired receptors in vertebrate evolution. BMC Evol Biol 2008; 8 : 148. [Google Scholar]
  12. Ohta Y, Goetz W, Hossain MZ, et al. Ancestral organization of the MHC revealed in the amphibian Xenopus. J Immunol 2006; 176 : 3674–85. [Google Scholar]
  13. Viertlboeck BC, Habermann FA, Schmitt R, et al. The chicken leukocyte receptor complex : a highly diverse multigene family encoding at least six structurally distinct receptor types. J Immunol 2005; 175 : 385–93. [Google Scholar]
  14. Trowsdale J, Barten R, Haude A, et al. The genomic context of natural killer receptor extended gene families. Immunol Rev 2001; 181 : 20–38. [Google Scholar]
  15. Zhang SM, Adema CM, Kepler TB, Loker ES. Diversification of Ig superfamily genes in an invertebrate. Science 2004; 305 : 251–4. [Google Scholar]
  16. Cannon JP, Haire RN, Schnitker N, et al. Individual protochordates have unique immune-type receptor repertoires. Curr Biol 2004; 14 : R465–6. [Google Scholar]
  17. Nei M, Rooney AP. Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 2005; 39 : 121–52. [Google Scholar]
  18. Du Pasquier L. Meeting the demand for innate and adaptive immunities during evolution. Scand J Immunol 2005; 62 (suppl 1) : 39–48. [Google Scholar]
  19. Pancer Z, Amemiya CT, Ehrhardt GR, et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 2004; 430 : 174–80. [Google Scholar]
  20. Nagawa F, Kishishita N, Shimizu K, et al. Antigen-receptor genes of the agnathan lamprey are assembled by a process involving copy choice. Nat Immunol 2007; 8 : 206–13. [Google Scholar]
  21. Rogozin IB, Iyer LM, Liang L, et al. Evolution and diversification of lamprey antigen receptors : evidence for involvement of an AID-APOBEC family cytosine deaminase. Nat Immunol 2007; 8 : 647–56. [Google Scholar]
  22. Alder MN, Rogozin IB, Iyer LM, et al. Diversity and function of adaptive immune receptors in a jawless vertebrate. Science 2005; 310 : 1970–3. [Google Scholar]
  23. Reynaud CA, Anquez V, Dahan A, Weill JC. A single rearrangement event generates most of the chicken immunoglobulin light chain diversity. Cell 1985; 40 : 283–91. [Google Scholar]
  24. Watson FL, Püttmann-Holgado R, Thomas F, et al. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 2005; 309 : 1874–8. [Google Scholar]
  25. Brites D, McTaggart S, Morris K, et al. The Dscam homologue of the crustacean Daphnia is diversified by alternative splicing like in insects. Mol Biol Evol 2008; 25 : 1429–39. [Google Scholar]
  26. Dong Y, Taylor HE, Dimopoulos G. AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol 2006; 4 : e229. [Google Scholar]
  27. Stavnezer J, Amemiya CT. Evolution of isotype switching. Semin Immunol 2004; 16 : 257–75. [Google Scholar]
  28. Daëron M, Jaeger S, Du Pasquier L, Vivier E. Immunoreceptor tyrosine-based inhibition motifs : a quest in the past and future. Immunol Rev 2008; 224 : 11–43. [Google Scholar]
  29. Nyholm SV, Passegue E, Ludington WB, et al. Fester, A candidate allorecognition receptor from a primitive chordate. Immunity 2006; 25 : 163–73. [Google Scholar]
  30. Hartenstein V. Blood cells and blood cell development in the animal kingdom. Annu Rev Cell Dev Biol 2006; 22 : 677–712. [Google Scholar]
  31. Uinuk-Ool T, Mayer WE, Sato Aet al. Lamprey lymphocyte-like cells express homologs of genes involved in immunologically relevant activities of mammalian lymphocytes. Proc Natl Acad Sci USA 2002; 99 : 14356–61. [Google Scholar]
  32. Du Pasquier L, Zucchetti I, De Santis R. Immunoglobulin superfamily receptors in protochordates : before RAG time. Immunol Rev 2004; 198 : 233–48. [Google Scholar]
  33. Schwartz RH. Immunologic tolerance. In : Paul WE, ed. Fundamental immunology, 6th ed. Philadelphia : Wolters Kluver-Lippincott-Williams and Wilkins, 2008 : 898–942. [Google Scholar]
  34. Rothenberg EV, Yui MA. Development of T cells. In : Paul WE, ed. Fundamental immunology, 6th ed. Philadelphia : Wolters Kluver-Lippincott-Williams and Wilkins, 2008 : 376–406. [Google Scholar]
  35. Shevach EM. Reguatory/suppressor T cell. In : Paul WE, ed. Fundamental immunology, 6th ed. Philadelphia : Wolters Kluver-Lippincott-Williams and Wilkins, 2008 : 943–82. [Google Scholar]
  36. Ferrandon D, Imler JL, Hétru C, Hoffmann JA. The Drosophila systemic immune response : sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 2007; 7 : 862–74. [Google Scholar]
  37. Miller DJ, Hemmrich G, Ball EE, et al. The innate immune repertoire in cnidaria--ancestral complexity and stochastic gene loss. Genome Biol 2007; 8 : R59. [Google Scholar]
  38. Blandin S, Levashina EA. Thioester-containing proteins and insect immunity. Mol Immunol 2004; 40 : 903–8. [Google Scholar]
  39. Blandin S, Levashina EA. Paludisme : et si l’on soignait les moustiques ? Med Sci (Paris) 2004; 20 : 740–2. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.