Accès gratuit
Numéro
Med Sci (Paris)
Volume 25, Numéro 3, Mars 2009
Page(s) 267 - 272
Section M/S revues
DOI https://doi.org/10.1051/medsci/2009253267
Publié en ligne 15 mars 2009
  1. Potten CS, Owen G, Roberts SA. The temporal and spatial changes in cell proliferation within the irradiated crypts of the murine small intestine. Int J Radiat Biol 1990; 57 : 185–99. [Google Scholar]
  2. Nejdfors P, Ekelund M, Westrom BR, et al. Intestinal permeability in humans is increased after radiation therapy. Dis Colon Rectum 2000; 43 : 1582–8. [Google Scholar]
  3. Garg AK, Mai WY, McGary JE, et al. Radiation proctopathy in the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 2006; 66 : 1294–305. [Google Scholar]
  4. Booth D, Potten CS. Protection against mucosal injury by growth factors and cytokines. J Natl Cancer Inst Monogr 2001; 2 : 16–20. [Google Scholar]
  5. Torres S, Thim L, Milliat F, et al. Glucagon-like peptide-2 improves both acute and late experimental radiation enteritis in the rat. Int J Radiat Oncol Biol Phys 2007; 69 : 1563–71. [Google Scholar]
  6. Lee KK, Jo HJ, Hong JP, et al. Recombinant human epidermal growth factor accelerates recovery of mouse small intestinal mucosa after radiation damage. Int J Radiat Oncol Biol Phys 2008; 71 : 1230–5. [Google Scholar]
  7. Dorr W, Bassler S, Reichel S, et al. Reduction of radiochemotherapy-induced early oral mucositis by recombinant human keratinocyte growth factor (palifermin): experimental studies in mice. Int J Radiat Oncol Biol Phys 2005; 62 : 881–7. [Google Scholar]
  8. Hatoum OA, Otterson MF, Kopelman D, et al. Radiation induces endothelial dysfunction in murine intestinal arterioles via enhanced production of reactive oxygen species. Arterioscler Thromb Vasc Biol 2006; 26 : 287–94. [Google Scholar]
  9. Molla M, Gironella M, Miquel R, et al. Relative roles of ICAM-1 and VCAM-1 in the pathogenesis of experimental radiation-induced intestinal inflammation. Int J Radiat Oncol Biol Phys 2003; 57 : 264–73. [Google Scholar]
  10. Johnson LB, Riaz AA, Adawi D, et al. Radiation enteropathy and leucocyte-endothelial cell reactions in a refined small bowel model. BMC Surg 2004; 4 : 10. [Google Scholar]
  11. Akyurek S, Yildiz F, Cengiz M, et al. Importance of timing of antiaggregant treatment in the prevention of radiation induced enteropathy. Med Hypotheses 2005; 65 : 736–9. [Google Scholar]
  12. Wang J, Albertson CM, Zheng H, et al. Short-term inhibition of ADP-induced platelet aggregation by clopidogrel ameliorates radiation-induced toxicity in rat small intestine. Thromb Haemost 2002; 87 : 122–8. [Google Scholar]
  13. Weitz-Schmidt G. Statins as anti-inflammatory agents. Trends Pharmacol Sci 2002; 23 : 482–6. [Google Scholar]
  14. Wolfrum S, Jensen KS, Liao JK. Endothelium-dependent effects of statins. Arterioscler Thromb Vasc Biol 2003; 23 : 729–36. [Google Scholar]
  15. Gaugler MH, Vereycken-Holler V, Squiban C, et al. Pravastatin limits endothelial activation after irradiation and decreases the resulting inflammatory and thrombotic responses. Radiat Res 2005; 163 : 479–87. [Google Scholar]
  16. Nubel T, Damrot J, Roos WP, et al. Lovastatin protects human endothelial cells from killing by ionizing radiation without impairing induction and repair of DNA double-strand breaks. Clin Cancer Res 2006; 12 : 933–9. [Google Scholar]
  17. Haydont V, Gilliot O, Rivera S, et al. Successful mitigation of delayed intestinal radiation injury using pravastatin is not associated with acute injury improvement or tumor protection. Int J Radiat Oncol Biol Phys 2007; 68 : 1471–82. [Google Scholar]
  18. Richter KK, Fink LM, Hughes BM, et al. Is the loss of endothelial thrombomodulin involved in the mechanism of chronicity in late radiation enteropathy ? Radiother Oncol 1997; 44 : 65–71. [Google Scholar]
  19. Wang J, Zheng H, Ou X, et al. Deficiency of microvascular thrombomodulin and up-regulation of protease-activated receptor-1 in irradiated rat intestine: possible link between endothelial dysfunction and chronic radiation fibrosis. Am J Pathol 2002; 160 : 2063–72. [Google Scholar]
  20. Wang J, Zheng H, Ou X, et al. Hirudin ameliorates intestinal radiation toxicity in the rat: support for thrombin inhibition as strategy to minimize side-effects after radiation therapy and as countermeasure against radiation exposure. J Thromb Haemost 2004; 2 : 2027–35. [Google Scholar]
  21. Milliat F, Sabourin JC, Tarlet G, et al. Essential role of plasminogen activator inhibitor type-1 in radiation enteropathy. Am J Pathol 2008; 172 : 691–701. [Google Scholar]
  22. Martin M, Lefaix J, Delanian S. TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target ? Int J Radiat Oncol Biol Phys 2000; 47 : 277–90. [Google Scholar]
  23. Rabbani ZN, Anscher MS, Zhang X, et al. Soluble TGFbeta type II receptor gene therapy ameliorates acute radiation-induced pulmonary injury in rats Int J Radiat Oncol Biol Phys 2003; 57 : 563–72. [Google Scholar]
  24. Zheng H, Wang J, Koteliansky VE, et al. Recombinant soluble transforming growth factor beta type II receptor ameliorates radiation enteropathy in mice Gastroenterology 2000; 119 : 1286–96. [Google Scholar]
  25. Anscher MS, Thrasher B, Rabbani Z, et al. Antitransforming growth factor-beta antibody 1D11 ameliorates normal tissue damage caused by high-dose radiation. Int J Radiat Oncol Biol Phys 2006; 65 : 876–81. [Google Scholar]
  26. Flanders KC. Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 2004; 85 : 47–64. [Google Scholar]
  27. Milliat F, Francois A, Isoir M, et al. Influence of endothelial cells on vascular smooth muscle cells phenotype after irradiation: implication in radiation-induced vascular damages. Am J Pathol 2006; 169 : 1484–95. [Google Scholar]
  28. Xavier S, Piek E, Fujii M, et al. Amelioration of radiation-induced fibrosis: inhibition of transforming growth factor-beta signaling by halofuginone. J Biol Chem 2004; 279 : 15167–76. [Google Scholar]
  29. Leask A. TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res 2007; 74 : 207–12. [Google Scholar]
  30. Haydont V, Mathe D, Bourgier C, et al. Induction of CTGF by TGF-beta1 in normal and radiation enteritis human smooth muscle cells: Smad/Rho balance and therapeutic perspectives. Radiother Oncol 2005; 76 : 219–25. [Google Scholar]
  31. Delanian S, Baillet F, Huart J, et al. Successful treatment of radiation-induced fibrosis using liposomal Cu/Zn superoxide dismutase: clinical trial.Radiother Oncol 1994; 32 : 12–20. [Google Scholar]
  32. Delanian S, Porcher R, Rudant J, et al. Kinetics of response to long-term treatment combining pentoxifylline and tocopherol in patients with superficial radiation-induced fibrosis. J Clin Oncol 2005; 23 : 8570–9. [Google Scholar]
  33. Boerma M, Roberto KA, Hauer-Jensen M. Prevention and treatment of functional and structural radiation injury in the rat heart by pentoxifylline and alpha-tocopherol. Int J Radiat Oncol Biol Phys 2008; 72 : 170–7. [Google Scholar]
  34. Hille A, Christiansen H, Pradier O, et al. Effect of pentoxifylline and tocopherol on radiation proctitis/enteritis. Strahlenther Onkol 2005; 181 : 606–14. [Google Scholar]
  35. Gothard L, Cornes P, Brooker S, et al. Phase II study of vitamin E and pentoxifylline in patients with late side effects of pelvic radiotherapy. Radiother Oncol 2005; 75 : 334–41. [Google Scholar]
  36. Vozenin-Brotons MC, Mauviel A. Comment modéliser les événements de la fibrose cutanée ? Med Sci (Paris) 2006; 22 : 172–7. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.