Accès gratuit
Numéro
Med Sci (Paris)
Volume 25, Numéro 1, Janvier 2009
Page(s) 57 - 63
Section M/S revues
DOI https://doi.org/10.1051/medsci/200925157
Publié en ligne 15 janvier 2009
  1. Katan MB, Zock PL, Mensink RP. Effects of fats and fatty acids on blood lipids in humans: an overview. Am J Clin Nutr 1994; 60 : S1017–22.
  2. Gnädig S, Chardigny JM, Sébédio JL. Lipides. In : Lait, Nutrition et Santé. Paris : Lavoisier Éditions, 2001.
  3. Rioux V, Catheline D, Legrand P. In rat hepatocytes, myristic acid occurs through lipogenesis, palmitic shortening and lauric acid elongation. Animal 2007; 1 : 820–6.
  4. Rioux V, Lemarchal P, Legrand P. Myristic acid, unlike palmitic acid, is rapidly metabolized in cultured rat hepatocytes. J Nutr Biochem 2000; 11 : 198–207.
  5. Mensink RP, Katan MB. Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler Thromb 1992; 12 : 911–9.
  6. Tholstrup T, Vessby B, Sandstrom B. Difference in effect of myristic and stearic acid on plasma HDL cholesterol within 24 h in young men. Eur J Clin Nutr 2003; 57 : 735–42.
  7. Rioux V, Catheline D, Bouriel M, Legrand P. Dietary myristic acid at physiologically relevant levels increases the tissue content of C20:5 n-3 and C20:3 n-6 in the rat. Reprod Nutr Dev 2005; 45 : 599–612.
  8. Johnson DR, Bhatnagar RS, Knoll LJ, Gordon JI. Genetic and biochemical studies of protein N-myristoylation. Annu Rev Biochem 1994; 63 : 869–914.
  9. Giang DK, Cravatt BF. A second mammalian N-myristoyltransferase. J Biol Chem 1998; 273 : 6595–8.
  10. McIlhinney RA, Young K, Egerton M, et al. Characterization of human and rat brain myristoyl-CoA:protein N-myristoyltransferase: evidence for an alternative splice variant of the enzyme. Biochem J 1998; 333 : 491–5.
  11. Rioux V, Beauchamp E, Pedrono F, et al. Identification and characterization of recombinant and native rat myristoyl-CoA: protein N-myristoyltransferases. Mol Cell Biochem 2006; 286 : 161–70.
  12. Kishore NS, Lu TB, Knoll LJ, et al. The substrate specificity of Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase. Analysis of myristic acid analogs containing oxygen, sulfur, double bonds, triple bonds, and/or an aromatic residue. J Biol Chem 1991; 266 : 8835–55.
  13. Bhatnagar RS, Futterer K, Waksman G, Gordon JI. The structure of myristoyl-CoA:protein N-myristoyltransferase. Biochim Biophys Acta 1999; 1441 : 162–72.
  14. Faergeman NJ, Knudsen J. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 1997; 323 : 1–12.
  15. Rioux V, Galat A, Jan G, et al. Exogenous myristic acid acylates proteins in cultured rat hepatocytes. J Nutr Biochem 2002; 13 : 66–74.
  16. Duronio RJ, Rudnick DA, Johnson RL, et al. Myristic acid auxotrophy caused by mutation of S. cerevisiae myristoyl-CoA:protein N-myristoyltransferase. J Cell Biol 1991; 113 : 1313–30.
  17. Kokame K, Fukada Y, Yoshizawa T, et al. Lipid modification at the N terminus of photoreceptor G-protein alpha-subunit. Nature 1992; 359 : 749–52.
  18. DeMar JC Jr, Anderson RE. Identification and quantitation of the fatty acids composing the CoA ester pool of bovine retina, heart, and liver. J Biol Chem 1997; 272 : 31362–8.
  19. Zha J, Weiler S, Oh KJ, et al. Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 2000; 290 : 1761–5.
  20. Maurer-Stroh S, Gouda M, Novatchkova M, et al. MYRbase: analysis of genome-wide glycine myristoylation enlarges the functional spectrum of eukaryotic myristoylated proteins. Genome Biol 2004; 5 : R21.
  21. Boutin JA. Myristoylation. Cell Signal 1997; 9 : 15–35.
  22. Ntwasa M, Aapies S, Schiffmann DA, Gay NJ. Drosophila embryos lacking N-myristoyltransferase have multiple developmental defects. Exp Cell Res 2001; 262 : 134–44.
  23. Yang SH, Shrivastav A, Kosinski C, et al. N-myristoyltransferase 1 is essential in early mouse development. J Biol Chem 2005; 280 : 18990–5.
  24. Sennequier N, Vadon-Le Goff S. Biosynthèse de monoxyde d’azote (NO) : mécanisme, régulation et contrôle. Med Sci (Paris) 1998; 14 : 1185–95.
  25. Shaul PW, Smart EJ, Robinson LJ, et al. Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae. J Biol Chem 1996; 271 : 6518–22.
  26. Busconi L, Michel T. Endothelial nitric oxide synthase. N-terminal myristoylation determines subcellular localization. J Biol Chem 1993; 268 : 8410–3.
  27. Robinson LJ, Busconi L, Michel T. Agonist-modulated palmitoylation of endothelial nitric oxide synthase. J Biol Chem 1995; 270 : 995–8.
  28. Gonzalez E, Kou R, Lin AJ, et al. Subcellular targeting and agonist-induced site-specific phosphorylation of endothelial nitric-oxide synthase. J Biol Chem 2002; 277 : 39554–60.
  29. Zhu W, Smart EJ. Myristic acid stimulates endothelial nitric-oxide synthase in a CD36- and an AMP kinase-dependent manner. J Biol Chem 2005; 280 : 29543–50.
  30. Laugerette F, Passilly-Degrace P, Patris B, Niot I, Montmayeur JP, Besnard P. CD36, un sérieux jalon sur la piste du goût du gras. Med Sci (Paris) 2006; 22 : 357–9.
  31. Isenberg JS, Jia Y, Fukuyama J, et al. Thrombospondin-1 inhibits nitric oxide signaling via CD36 by inhibiting myristic acid uptake. J Biol Chem 2007; 282 : 15404–15.
  32. Gong M, Wilson M, Kelly T, et al. HDL-associated estradiol stimulates endothelial NO synthase and vasodilation in an SR-BI-dependent manner. J Clin Invest 2003; 111 : 1579–87.
  33. White J, Guerin T, Swanson H, et al. Diabetic HDL-associated myristic acid inhibits acetylcholine-induced nitric oxide generation by preventing the association of endothelial nitric oxide synthase with calmodulin. Am J Physiol Cell Physiol 2008; 294 : C295–305.
  34. Harris WS, Von Schacky C. The omega-3 index: a new risk factor for death from coronary heart disease ? Prev Med 2004; 39 : 212–20.
  35. Bourre JM. Enrichissement de l’alimentation des animaux avec les acides gras omega-3 : impact sur la valeur nutritionnelle de leurs produits pour l’homme. Med Sci (Paris) 2005; 21 : 773–9.
  36. Jan S, Guillou H, D’Andrea S, et al. Myristic acid increases delta6-desaturase activity in cultured rat hepatocytes. Reprod Nutr Dev 2004; 44 : 131–40.
  37. Rioux V, Catheline D, Beauchamp E, et al. Substitution of dietary oleic for myristic acid increases the tissue storage of alfa-linolenic acid and the concentration of docosahexaenoic acid in brain, red blood cells and plama in the rat. Animal 2008; 2 : 636–44.
  38. Porta N, Auvin S. Acides gras polyinsaturés: propriétés et mécanismes anticonvulsivants. Med Sci (Paris) 2009; 25 : 51–6.
  39. Dabadie H, Peuchant E, Bernard M, et al. Moderate intake of myristic acid in sn-2 position has beneficial lipidic effects and enhances DHA of cholesteryl esters in an interventional study. J Nutr Biochem 2005; 16 : 375–82.
  40. Beauchamp E, Goenaga D, Le Bloc’h J, et al. Myristic acid increases the activity of dihydroceramide Delta4-desaturase 1 through its N-terminal myristoylation. Biochimie 2007; 89 : 1553–61.
  41. Borgese N, Aggujaro D, Carrera P, et al. A role for N-myristoylation in protein targeting: NADH-cytochrome b5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes. J Cell Biol 1996; 135 : 1501–13.
  42. Stiban J, Fistere D, Colombini M. Dihydroceramide hinders ceramide channel formation: implications on apoptosis. Apoptosis 2006; 11 : 773–80.
  43. Corbin A, Grigorov B, Roingeard P, et al. Une nouvelle vision de l’assemblage du VIH-1. Med Sci (Paris) 2008; 24 : 49–55.
  44. Henderson LE, Bowers MA, Sowder RC 2nd, et al. Gag proteins of the highly replicative MN strain of human immunodeficiency virus type 1 : posttranslational modifications, proteolytic processings, and complete amino acid sequences. J Virol 1992; 66 : 1856–65.
  45. Schultz AM, Oroszlan S. In vivo modification of retroviral gag gene-encoded polyproteins by myristic acid. J Virol 1983; 46 : 355–61.
  46. Takamune N, Gota K, Misumi S, et al. HIV-1 production is specifically associated with human NMT1 long form in human NMT isozymes. Microbes Infect 2008; 10 : 143–50.
  47. Seaton KE, Smith CD. N-Myristoyltransferase isozymes exhibit differential specificity for human immunodeficiency virus type 1 Gag and Nef. J Gen Virol 2008; 89 : 288–96.
  48. Spearman P, Horton R, Ratner L, Kuli-Zade I. Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism. J Virol 1997; 71 : 6582–92.
  49. Boutin JA. La N-myristoyl transférase, carrefour entre virologie et oncologie: une voie d’accès à des anticancéreux et à des antiviraux d’un genre nouveau ? Med Sci (Paris) 1993; 9 : 684–92.
  50. Lindwasser OW, Resh MD. Myristoylation as a target for inhibiting HIV assembly: unsaturated fatty acids block viral budding. Proc Natl Acad Sci USA 2002; 99 : 13037–42.
  51. Morikawa Y, Hinata S, Tomoda H, et al. Complete inhibition of human immunodeficiency virus Gag myristoylation is necessary for inhibition of particle budding. J Biol Chem 1996; 271 : 2868–73.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.