Accès gratuit
Numéro
Med Sci (Paris)
Volume 24, Numéro 8-9, Août-Septembre 2008
Page(s) 753 - 757
Section M/S revues
DOI https://doi.org/10.1051/medsci/20082489753
Publié en ligne 15 août 2008
  1. Jullien PE, Kinoshita T, Ohad N, Berger F. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 2006; 18 : 1360–72. [Google Scholar]
  2. Kinoshita T, Miura A, Choi Y, et al. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 2004; 303 : 521–3. [Google Scholar]
  3. Hermon P, Srilunchang KO, Zou J, et al. Activation of the imprinted Polycomb Group Fie1 gene in maize endosperm requires demethylation of the maternal allele. Plant Mol Biol 2007; 64 : 387–95. [Google Scholar]
  4. Gutierrez-Marcos JF, Costa LM, Dal Pra M, et al. Epigenetic asymmetry of imprinted genes in plant gametes. Nat Genet 2006; 38 : 876–8. [Google Scholar]
  5. Kinoshita Y, Saze H, Kinoshita T, et al. Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J 2006; 49 : 38–45. [Google Scholar]
  6. Finnegan EJ, Peacock WJ, Dennis ES. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA 1996; 93 : 8449–54. [Google Scholar]
  7. Saze H, Scheid OM, Paszkowski J. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet 2003; 34 : 65–9. [Google Scholar]
  8. Morgan HD, Santos F, Green K, et al. Epigenetic reprogramming in mammals. Hum Mol Genet 2001; 14 (suppl 1) : 47–58. [Google Scholar]
  9. Feil R, Berger F. Convergent evolution of genomic imprinting in plants and mammals. Trends Genet 2007; 23 : 192–9. [Google Scholar]
  10. Gehring M, Choi Y, Fischer RL. Imprinting and seed development. Plant Cell 2006; 16 (suppl) : 203–13. [Google Scholar]
  11. Gehring M, Huh JH, Hsieh TF, et al. DEMETER DNA glycosylase establishes MEDEA Polycomb gene self-imprinting by allele-specific demethylation. Cell 2006; 124 : 495–506. [Google Scholar]
  12. Mathieu O, Reinders J, Caikovski M, et al. Transgenerational stability of the Arabidopsis epigenome Is coordinated by CG methylation. Cell 2007; 130 : 851–62. [Google Scholar]
  13. Honys D, Twell D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 2004; 5 : R85. [Google Scholar]
  14. Guitton AE, Berger F. Control of reproduction by Polycomb group complexes in animals and plants. Int J Dev Biol 2005; 49 : 707–16. [Google Scholar]
  15. Jullien PE, Katz A, Oliva M, et al. Polycomb Group complexes self-regulate imprinting of the polycomb group gene MEDEA in Arabidopsis. Curr Biol 2006; 16 : 486–92. [Google Scholar]
  16. Makarevich G, Leroy O, Akinck U, et al. Different Polycomb group complexes regulate common target genes in Arabidopsis. EMBO J 2006; 7 : 947–52. [Google Scholar]
  17. Makarevitch G, Villar CB, Erilova A, Kohler C. Mechanism of PHERES1 imprinting in Arabidopsis. J Cell Sci 2008; 121 : 906–12. [Google Scholar]
  18. Umlauf D, Goto Y, Cao R, et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet 2006; 36 : 1296–300. [Google Scholar]
  19. Lewis A, Mitsuya K, Umlauf D, et al. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat Genet 2004; 36 : 1291–5. [Google Scholar]
  20. Scott RJ, Spielman M, Bailey J, Dickinson HG. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 1998; 125 : 3329–41. [Google Scholar]
  21. Wagschal A, Feil R. Genomic imprinting in the placenta. Cytogenet Genome Res 2006; 13 : 90–8. [Google Scholar]
  22. Guitton AE, Page DR, Chambrier P, et al. Identification of new members of fertilisation independent seed Polycomb group pathway involved in the control of seed development in Arabidopsis thaliana. Development 2004; 131 : 2971–81. [Google Scholar]
  23. Nowack MK, Shirzadi R, Dissmeyer N, et al. Bypassing genomic imprinting allows seed development. Nature 2007; 447 : 312–5. [Google Scholar]
  24. Spielman M, Vinkenoog R, Dickinson HG, Scott RJ. The epigenetic basis of gender in flowering plants and mammals. Trends Genet 2001; 17 : 705–11. [Google Scholar]
  25. Haig D. Genomic imprinting and kinship: how good is the evidence ? Annu Rev Genet 2001; 38 : 553–85. [Google Scholar]
  26. Spillane C, Schmid KJ, Laoueille-Duprat S, et al. Positive darwinian selection at the imprinted MEDEA locus in plants. Nature 2007; 448 : 349–52. [Google Scholar]
  27. Monk D, Arnaud P, Apostolidou S, et al. Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci USA 2006; 103 : 6623–8. [Google Scholar]
  28. Gabory A, Dandolo L. Épigénétique et développement : l’empreinte prentale. Med Sci (Paris) 2005; 21 : 390–5. [Google Scholar]
  29. Prouteau M, Colot V. Contrôles épigénétiques, développement et variation génétique naturelle chez les plantes. Med Sci (Paris) 2005; 21 : 422–7. [Google Scholar]
  30. Henckel A, Feil R. Asymétrie des génomes parentaux : implications en pathologie. Med Sci (Paris) 2008; 24 : 747–52. [Google Scholar]
  31. Julien PE, Mosquna A, Ingouff M. et al. Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis. Plos Biol 2008 (sous presse). [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.