Accès gratuit
Numéro
Med Sci (Paris)
Volume 22, Numéro 3, Mars 2006
Page(s) 266 - 272
Section M/S revues
DOI https://doi.org/10.1051/medsci/2006223266
Publié en ligne 15 mars 2006
  1. Lane N. Oxygen, the molecule that made the world. New York : Oxford University Press, 2003 : 366 p. [Google Scholar]
  2. Gardès-Albert M, Jore D. Aspects physicochimiques des radicaux libres centrés sur l’oxygène. In : Delattre JB, Bonnefont-Rousselot D, eds. Radicaux libres et stress oxydant. Aspects biologiques et pathologiques. Paris : Lavoisier, 2005 : 1–23. [Google Scholar]
  3. Morel Y, Barouki R. Repression of gene expression by oxidative stress. Biochem J 1999; 342 : 481–96. [Google Scholar]
  4. Roussel AM, Nève J, Hininger I. Antioxydants et nutrition. In : Delattre JB, Bonnefont-Rousselot D, eds. Radicaux libres et stress oxydant. Aspects biologiques et pathologiques. Paris : Lavoisier, 2005 : 261–80. [Google Scholar]
  5. Barouki R, Morel Y. Repression of cytochrome P450 1A1 gene expression by oxidative stress : mechanisms and biological implications. Biochem Pharmacol 2001; 61 : 511–6. [Google Scholar]
  6. Beaudeux JL, Vasson MP. Sources cellulaires des espèces réactives de l’oxygène. In : Delattre JB, Bonnefont-Rousselot D, eds. Radicaux libres et stress oxydant. Aspects biologiques et pathologiques. Paris : Lavoisier, 2005 : 45–86. [Google Scholar]
  7. Finkel T. Oxidant signals and oxidative stress. Curr Opin Cell Biol 2003; 15 : 247–54. [Google Scholar]
  8. Morel Y, Barouki R. Influence du stress oxydant sur la régulation des gènes. Med Sci (Paris) 1998; 14 : 713–21. [Google Scholar]
  9. Beckman KB, Ames BN. Endogenous oxidative damage of mtDNA. Mutat Res 1999; 424 : 51–8. [Google Scholar]
  10. Delattre J, Thérond P, Bonnefont-Rousselot D. Espèces réactives de l’oxygène, antioxydants et vieillissement. In : Delattre JB, Bonnefont-Rousselot D, eds. Radicaux libres et stress oxydant. Aspects biologiques et pathologiques. Paris : Lavoisier, 2005 : 281–309. [Google Scholar]
  11. Desaint S, Luriau S, Aude JC, et al. Mammalian antioxidant defenses are not inducible by H2O2. J Biol Chem 2004; 279 : 31157–63. [Google Scholar]
  12. Harman D. Aging : a theory based on free radical and radiation chemistry. J Gerontol 1956; 11 : 298–300. [Google Scholar]
  13. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969; 244 : 6049–55. [Google Scholar]
  14. Kayo T, Allison DB, Weindruch R, Prolla TA. Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc Natl Acad Sci USA 2001; 98 : 5093–8. [Google Scholar]
  15. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005; 120 : 483–95. [Google Scholar]
  16. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997; 272 : 20313–6. [Google Scholar]
  17. Sohal RS, Mockett RJ, Orr WC. Mechanisms of aging : an appraisal of the oxidative stress hypothesis. Free Radic Biol Med 2002; 33 : 575–86. [Google Scholar]
  18. Kirkwood TB. Understanding the odd science of aging. Cell 2005; 120 : 437–47. [Google Scholar]
  19. Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science 1996; 273 : 59–63. [Google Scholar]
  20. Heilbronn LK, Ravussin E. Calorie restriction and aging : review of the literature and implications for studies in humans. Am J Clin Nutr 2003; 78 : 361–9. [Google Scholar]
  21. Pearl R. The rate of living. New York : Knopf, 1928. [Google Scholar]
  22. Barja G. Mitochondrial free radical production and aging in mammals and birds. Ann NY Acad Sci 1998; 854 : 224–38. [Google Scholar]
  23. Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism : understanding longevity. Nat Rev Mol Cell Biol 2005; 6 : 298–305. [Google Scholar]
  24. Pecqueur C, Alves-Guerra MC, Gelly C, et al. Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J Biol Chem 2001; 276 : 8705–12. [Google Scholar]
  25. Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature 2000; 408 : 255–62. [Google Scholar]
  26. Purdom S, Chen QM. Linking oxidative stress and genetics of aging with p66Shc signaling and forkhead transcription factors. Biogerontology 2003; 4 : 181–91. [Google Scholar]
  27. Holzenberger M, Dupont J, Ducos B, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003; 421 : 182–7. [Google Scholar]
  28. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403 : 795–800. [Google Scholar]
  29. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999; 13 : 2570–80. [Google Scholar]
  30. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303 : 2011–5. [Google Scholar]
  31. Gutteridge JM, Halliwell B. Free radicals and antioxidants in the year 2000. A historical look to the future. Ann NY Acad Sci 2000; 899 : 136–47. [Google Scholar]
  32. Orr WC, Sohal RS. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 1994; 263 : 1128–30. [Google Scholar]
  33. Schriner SE, Linford NJ, Martin GM, et al. Extension of murine lifespan by overexpression of catalase targeted to mitochondria. Science 2005; 308 : 1909–11. [Google Scholar]
  34. Hagen TM, Liu J, Lykkesfeldt J, et al. Feeding acetyl-L-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. Proc Natl Acad Sci USA 2002; 99 : 1870–5. [Google Scholar]
  35. Barouki R. La cellule stressée. Med Sci (Paris) 1999; 15 : 1359–61. [Google Scholar]
  36. Petropoulos I, Friguet B. Protein maintenance in aging and replicative senescence : a role for the peptide methionine sulfoxide reductases. Biochim Biophys Acta 2005; 1703 : 261–6. [Google Scholar]
  37. Lombard DB, Chua KF, Mostoslavsky R, et al. DNA repair, genome stability, and aging. Cell 2005; 120 : 497–512. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.