Accès gratuit
Numéro
Med Sci (Paris)
Volume 21, Numéro 6-7, Juin–Juillet 2005
Page(s) 634 - 640
Section M/S revues
DOI https://doi.org/10.1051/medsci/2005216-7634
Publié en ligne 15 juin 2005
  1. Cuille J, Chelle PL. Pathologie animale. La maladie dite tremblante du mouton est-elle inoculable ? CR Acad Sci (Paris) 1936; 203 : 1552–4. [Google Scholar]
  2. Hadlow WJ. Scrapie and Kuru. Lancet 1959; 2 : 289–90. [Google Scholar]
  3. Chandler RL. Encephalopathy in mice produced by inoculation with scrapie brain material. Lancet 1961; 1 : 1378–9. [Google Scholar]
  4. Gajdusek DC. Transmissible and non-transmissible amyloidoses: autocatalytic post-translational conversion of host precursor proteins to ß-pleated conformations. J Neuroimmunol 1988; 20 : 95–110. [Google Scholar]
  5. Alper T, Haig DA , Clarke MC. The exceptionally small size of the scrapie agent. Biochem Biophys Res Commun 1966; 22 : 278–84. [Google Scholar]
  6. Griffith JS. Self-replication and scrapie. Nature 1967; 215 : 1043–4. [Google Scholar]
  7. Prusiner SB, Groth DF, Cochran SP, et al. Molecular properties, partial purification, and assay by incubation period measurements of the hamster scrapie agent. Biochemistry 1980; 19 : 4883–91. [Google Scholar]
  8. Prusiner SB, McKinley MP, Groth DF, et al. Scrapie agent contains a hydrophobic protein. Proc Natl Acad Sci USA 1981; 78 : 6675–9. [Google Scholar]
  9. Prusiner SB, Bolton DC, Groth DF, et al. Further purification and characterization of scrapie prions. Biochemistry 1982; 26 : 6942–50. [Google Scholar]
  10. Prusiner SB, McKinley MP, Bowman KA, et al. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 1983; 35 : 349–58. [Google Scholar]
  11. Prusiner SB, Groth DF, Bolton DC, et al. Purification and structural studies of a major scrapie prion protein. Cell 1984; 38 : 127–34. [Google Scholar]
  12. Sailer A, Bueler H, Fischer M, et al. No propagation of prions in mice devoid of PrP. Cell 1994; 77 : 967–8. [Google Scholar]
  13. Schätzl HM, Da Costa M, Taylor L, et al. Prion protein gene variation among primates. J Mol Biol 1995; 254 : 362–74. [Google Scholar]
  14. Endo T, Groth D, Prusiner SB, Kobata A. Diversity of oligosaccharide structures linked to asparagines of the scrapie prion protein. Biochemistry 1989; 28 : 8380–8. [Google Scholar]
  15. Stahl N, Borchelt DR, Hsiao K, Prusiner SB. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 1987; 51 : 229–40. [Google Scholar]
  16. Rudd PM, Endo T, Colominas C, et al. Glycosylation differences between the normal and pathogenic prion protein isoforms. Proc Natl Acad Sci USA 1999; 96 : 13044–9. [Google Scholar]
  17. Riek R, Hornemann S, Wider G, et al. NMR structure of the mouse prion protein domain PrP(121-321). Nature 1996; 382 : 180–2. [Google Scholar]
  18. Billeter M, Riek R, Wider G, et al. Prion protein NMR structure and species barrier for prion diseases. Proc Natl Acad Sci USA 1997; 94 : 7281–5. [Google Scholar]
  19. Huang Z, Prusiner SB, Cohen FE. Scrapie prions: a three-dimensional model of an infectious fragment. Folding Des 1996; 1 : 13–9. [Google Scholar]
  20. Cantor CR, Schimmel PR. Biophysical chemistry, 12th ed. New York : WH Freeman and Co, 2001 : 409–31. [Google Scholar]
  21. Jackson GS, Hosszu LL, Power A, et al. Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 1999; 283 : 1935–7. [Google Scholar]
  22. Hill AF, Antoniou M, Collinge. Protease-resistant prion protein produced in vitro lacks detectable infectivity. J Gen Virol 1999; 80 : 11–4. [Google Scholar]
  23. Legname G, Baskakov IV, Nguyen HO, et al. Synthetic mammalian prions. Science 2004; 305 : 673–6. [Google Scholar]
  24. Couzin J. An end to the prion debate ? Don’t count on it. Science 2004; 305 : 589. [Google Scholar]
  25. Cox BS. PSI, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 1965; 20 : 505–21. [Google Scholar]
  26. Lacroute F. Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J Bacteriol 1971; 106 : 519–22. [Google Scholar]
  27. Wickner RB. Evidence for a prion analog in S. cerevisiae: The [URE3] non-Mendelian genetic element as an altered URE2 protein. Science 1994; 264 : 566–9. [Google Scholar]
  28. Serio TR, Cashikar AG, Kowal AS, et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 2000; 289 : 1317–21. [Google Scholar]
  29. Bousset L, Thomson NH, Radford SE, Melki R. The yeast prion Ure2p retains its native alpha-helical conformation upon assembly into protein fibrils in vitro. EMBO J 2002; 21 : 2903–11. [Google Scholar]
  30. Sunde M, Serpell LC, Bartlam M, et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 1997; 273 : 729–39. [Google Scholar]
  31. Zurdo J, Guijarro JI, Dobson CM. Preparation and characterization of purified amyloid fibrils. J Am Chem Soc 2001; 123 : 8141–2. [Google Scholar]
  32. Bousset L, Briki F, Doucet J, Melki R. The native-like conformation of Ure2p in fibrils assembled under physiologically relevant conditions switches to an amyloid-like conformation upon heat-treatment of the fibrils. J Struct Biol 2003; 141 : 132–42. [Google Scholar]
  33. Abram D, Koffler H. In vitro formation of flagella-like filaments and other structure from flagellin. J Mol Biol 1964; 9 : 168–85. [Google Scholar]
  34. Lomas DA, Carrell RW. Serpinopathies and the conformational dementias. Nat Rev Genet 2002; 3 : 759–68. [Google Scholar]
  35. Tuite MF, Cox BS. Propagation of yeast prions. Nat Rev 2003; 4 : 878–89. [Google Scholar]
  36. Bousset L, Belrhali H, Janin J, et al. Structure of the globular region of the prion protein Ure2 from the yeast Saccharomyces cerevisiae. Structure 2001; 9 :39–46. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.