Accès gratuit
Med Sci (Paris)
Volume 21, Numéro 2, Février 2005
Page(s) 170 - 174
Section M/S revues
Publié en ligne 15 février 2005
  1. Stenson PD, Ball EV, Mort M, et al. Human gene mutation database (HGMD) : 2003 update. Hum Mutat 2003; 21 : 577–81. [Google Scholar]
  2. Ars E, Serra E, Garcia J, et al. Mutations affecting mRNA splicing are the most common molecular defects in patients with neurofibromatosis type 1. Hum Mol Genet 2000; 9 : 237–47. [Google Scholar]
  3. Teraoka SN, Telatar M, Becker-Catania S, et al. Splicing defects in the ataxia-telangiectasia gene, ATM : underlying mutations and consequences. Am J Hum Genet 1999; 64 : 1617–31. [Google Scholar]
  4. Cooper TA, Mattox W. The regulation of splice-site selection, and its role in human disease. Am J Hum Genet 1997; 61 : 259–66. [Google Scholar]
  5. Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense : exonic mutations that affect splicing. Nat Rev Genet 2002; 3 : 285–98. [Google Scholar]
  6. Yang Y, Swaminathan S, Martin BK, Sharan SK. Aberrant splicing induced by missense mutations in BRCA1 : clues from a humanized mouse model. Hum Mol Genet 2003; 12 : 2121–31. [Google Scholar]
  7. Cartegni L, Krainer AR. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 2002; 30 : 377–84. [Google Scholar]
  8. Kashima T, Manley JL. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet 2003; 34 : 460–3. [Google Scholar]
  9. Cogan JD, Prince MA, Lekhakula S, et al. A novel mechanism of aberrant pre-mRNA splicing in humans. Hum Mol Genet 1997; 6 : 909–12. [Google Scholar]
  10. Pagani F, Stuani C, Tzetis M, et al. New type of disease causing mutations : the example of the composite exonic regulatory elements of splicing in CFTR exon 12. Hum Mol Genet 2003; 12 : 1111–20. [Google Scholar]
  11. Chao HK, Hsiao KJ, Su TS. A silent mutation induces exon skipping in the phenylalanine hydroxylase gene in phenylketonuria. Hum Genet 2001; 108 : 14–9. [Google Scholar]
  12. Hefferon TW, Groman JD, Yurk CE, Cutting GR. A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing. Proc Natl Acad Sci USA 2004; 101 : 3504–9. [Google Scholar]
  13. Buratti E, Brindisi A, Pagani F, Baralle FE. Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9 : a functional link with disease penetrance. Am J Hum Genet 2004; 74 : 1322–5. [Google Scholar]
  14. Sakai T, Ohtani N, McGee TL, et al. Oncogenic germ-line mutations in Sp1 and ATF sites in the human retinoblastoma gene. Nature 1991; 353 : 83–6. [Google Scholar]
  15. Ohtani-Fujita N, Fujita T, Takahashi R, et al. A silencer element in the retinoblastoma tumor-suppressor gene. Oncogene 1994; 9 : 1703–11. [Google Scholar]
  16. Price P, Wong AM, Williamson D, et al. Polymorphisms at positions -22 and -348 in the promoter of the BAT1 gene affect transcription and the binding of nuclear factors. Hum Mol Genet 2004; 13 : 967–74. [Google Scholar]
  17. Liu L, Dilworth D, Gao L, et al. Mutation of the CDKN2A 5’ UTR creates an aberrant initiation codon and predisposes to melanoma. Nat Genet 1999; 21 : 128–32. [Google Scholar]
  18. Cazzola M, Skoda RC. Translational pathophysiology : a novel molecular mechanism of human disease. Blood 2000; 95 : 3280–8. [Google Scholar]
  19. Marlin S, Blanchard S, Slim R, et al. Townes-Brocks syndrome : detection of a SALL1 mutation hot spot and evidence for a position effect in one patient. Hum Mutat 1999; 14 : 377–86. [Google Scholar]
  20. Bedell MA, Jenkins NA, Copeland NG. Good genes in bad neighbourhoods. Nat Genet 1996; 12 : 229–32. [Google Scholar]
  21. Pfeifer D, Kist R, Dewar K, et al. Campomelic dysplasia translocation breakpoints are scattered over 1 Mb proximal to SOX9 : evidence for an extended control region. Am J Hum Genet 1999; 65 : 111–24. [Google Scholar]
  22. Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE. Nonsense-mediated decay approaches the clinic. Nat Genet 2004; 36 : 801–8. [Google Scholar]
  23. Roca X, Sachidanandam R, Krainer AR. Intrinsic differences between authentic and cryptic 5’ splice sites. Nucleic Acids Res 2003; 31 : 6321–33. [Google Scholar]
  24. Harland M, Mistry S, Bishop DT, Bishop JA. A deep intronic mutation in CDKN2A is associated with disease in a subset of melanoma pedigrees. Hum Mol Genet 2001; 10 : 2679–86. [Google Scholar]
  25. Abkevich V, Zharkikh A, Deffenbaugh AM, et al. Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. J Med Genet 2004; 41 : 492–507. [Google Scholar]
  26. Messiaen LM, Callens T, Mortier G, et al. Exhaustive mutation analysis of the NF1 gene allows identification of 95 % of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 2000; 15 : 541–55. [Google Scholar]
  27. Andreutti-Zaugg C, Scott RJ, Iggo R. Inhibition of nonsense-mediated messenger RNA decay in clinical samples facilitates detection of human MSH2 mutations with an in vivo fusion protein assay and conventional techniques. Cancer Res 1997; 57 : 3288–93. [Google Scholar]
  28. Tufarelli C, Stanley JA, Garrick D, et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 2003; 34 : 157–65. [Google Scholar]
  29. Wittkopp PJ, Haerum BK, Clark AG. Evolutionary changes in cis and trans gene regulation. Nature 2004; 430 : 85–8. [Google Scholar]
  30. Han JS, Szak ST, Boeke JD. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 2004; 429 : 268–74. [Google Scholar]
  31. Hudder A, Werner R. Analysis of a Charcot-Marie-Tooth disease mutation reveals an essential internal ribosome entry site element in the connexin-32 gene. J Biol Chem 2000; 275 : 34586–91. [Google Scholar]
  32. Bulyk ML. Computational prediction of transcription-factor binding site locations. Genome Biol 2003; 5 : 201. [Google Scholar]
  33. Wasserman WW, Sandelin A. Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 2004; 5 : 276–87. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.