Accès gratuit
Med Sci (Paris)
Volume 21, Numéro 2, Février 2005
Page(s) 162 - 169
Section M/S revues
Publié en ligne 15 février 2005
  1. Arroyo EJ, Scherer SS. On the molecular architecture of myelinated fibers. Histochem Cell Biol 2000; 113 : 1–18.
  2. Filbin MT, Tennekoon GI. The role of complex carbohydrates in adhesion of the myelin protein, P0. Neuron 1991; 7 : 845–55.
  3. Tetzlaff W. Tight junction contact events and temporary gap junctions in the sciatic nerve fibres of the chicken during Wallerian degeneration and subsequent regeneration. J Neurocytol 1982; 11 : 839–58.
  4. Fannon AM, Sherman DL, Ilyina-Gragerova G, et al. Novel E-cadherin-mediated adhesion in peripheral nerve : Schwann cell architecture is stabilized by autotypic adherens junctions. J Cell Biol 1995; 129 : 189–202.
  5. Gow A, Southwood CM, Li JS, et al. CNS myelin and Sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell 1999; 99 : 649–59.
  6. Tsukita S, Furuse M. Claudin-based barrier in simple and stratified cellular sheets. Curr Opin Cell Biol 2002; 14 : 531–6.
  7. Poliak S, Matlis S, Ullmer C, et al. Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells. J Cell Biol 2002; 159 : 361–72.
  8. Nicholson BJ. Gap junctions : from cell to molecule. J Cell Sci 2003; 116 : 4479–81.
  9. Balice-Gordon RJ, Bone LJ, Scherer SS. Functional gap junctions in the schwann cell myelin sheath. J Cell Biol 1998; 142 : 1095–104.
  10. Altevogt BM, Kleopa KA, Postma FR, et al. Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems. J Neurosci 2002; 22 : 6458–70.
  11. Scherer SS, Deschenes SM, Xu YT, et al. Connexin32 is a myelin-related protein in the PNS and CNS. J Neurosci 1995; 15 : 8281–94.
  12. Suter U, Scherer SS. Disease mechanisms in inherited neuropathies. Nat Rev Neurosci 2003; 4 : 714–26.
  13. Berger P, Young P, Suter U. Molecular cell biology of Charcot-Marie-Tooth disease. Neurogenetics 2002; 4 : 1–15.
  14. Young P, Boussadia O, Berger P, et al. E-cadherin is required for the correct formation of autotypic adherens junctions of the outer mesaxon but not for the integrity of myelinated fibers of peripheral nerves. Mol Cell Neurosci 2002; 21 : 341–51.
  15. Yamada H, Denzer AJ, Hori H, et al. Dystroglycan is a dual receptor for agrin and laminin-2 in Schwann cell membrane. J Biol Chem 1996; 271 : 23418–23.
  16. Sherman DL, Fabrizi C, Gillespie CS, et al. Specific disruption of a Schwann cell dystrophin-related protein complex in a demyelinating neuropathy. Neuron 2001; 30 : 677–87.
  17. Gillespie CS, Sherman DL, Fleetwood-Walker SM, et al. Peripheral demyelination and neuropathic pain behavior in periaxin-deficient mice. Neuron 2000; 26 : 523–31.
  18. Boerkoel CF, Takashima H, Stankiewicz P, et al. Periaxin mutations cause recessive Dejerine-Sottas neuropathy. Am J Hum Genet 2001; 68 : 325–33.
  19. Guilbot A, Williams A, Ravise N, et al. A mutation in periaxin is responsible for CMT4F, an autosomal recessive form of Charcot-Marie-Tooth disease. Hum Mol Genet 2001; 10 : 415–21.
  20. Saito F, Moore SA, Barresi R, et al. Unique role of dystroglycan in peripheral nerve myelination, nodal structure, and sodium channel stabilization. Neuron 2003; 38 : 747–58.
  21. Rambukkana A. Mycobacterium leprae-induced demyelination : a model for early degeneration. Curr Opin Immunol 2004; 16 : 511–8.
  22. Matsumura K, Yamada H, Saito F, et al. Peripheral nerve involvement in merosin-deficient cognenital muscular dystrophy and dy mouse. Neuromusc. Disorders 1997; 7 :7–12.
  23. Salzer JL. Polarized domains of myelinated axons. Neuron 2003; 40 : 297–318.
  24. Goutebroze L, Carnaud M, Denisenko N, et al. Syndecan-3 and syndecan-4 are enriched in Schwann cell perinodal processes. BMC Neurosci 2003; 4 : 29.
  25. Bhat MA, Rios JC, Lu Y, et al. Axon-glia interactions and the domain organization of myelinated axons require neurexin IV/Caspr/Paranodin. Neuron 2001; 30 : 369–83.
  26. Boyle ME, Berglund EO, Murai KK, et al. Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 2001; 30 : 385–97.
  27. Dupree JL, Girault JA, Popko B. Axo-glial interactions regulate the localization of axonal paranodal proteins. J Cell Biol 1999; 147 : 1145–52.
  28. Ishibashi T, Dupree JL, Ikenaka K, et al. A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J Neurosci 2002; 22 : 6507–14.
  29. Poliak S, Gollan L, Salomon D, et al. Localization of Caspr2 in myelinated nerves depends on axon-glia interactions and the generation of barriers along the axon. J Neurosci 2001; 21 : 7568–75.
  30. Poliak S, Salomon D, Elhanany H, et al. Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. J Cell Biol 2003; 162 : 1149–60.
  31. Traka M, Goutebroze L, Denisenko N, et al. Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers. J Cell Biol 2003; 162 : 1161–72.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.