Free Access
Issue
Med Sci (Paris)
Volume 21, Number 1, Janvier 2005
Page(s) 43 - 48
Section M/S Revues
DOI https://doi.org/10.1051/medsci/200521143
Published online 15 January 2005
  1. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88 : 323–31. [Google Scholar]
  2. Amor M, Parker KL, Globerman H, et al. Mutation in the CYP21B gene (Ile-172-Asn) causes steroid 21-hydroxylase deficiency. Proc Natl Acad Sci USA 1988; 85 : 1600–4. [Google Scholar]
  3. Purandare SM, Patel PI. Recombination hot spots and human disease. Genome Res 1997; 7 : 773–86. [Google Scholar]
  4. Wiesmuller L, Cammenga J, Deppert WW. In vivo assay of p53 function in homologous recombination between simian virus 40 chromosomes. J Virol 1996; 70 : 737–44. [Google Scholar]
  5. Bishop AJ, Hollander MC, Kosaras B, et al. Atm-, p53-, and Gadd45a-deficient mice show an increased frequency of homologous recombination at different stages during development. Cancer Res 2003; 63 : 5335–43. [Google Scholar]
  6. Meyn MS, Strasfeld L, Allen C. Testing the role of p53 in the expression of genetic instability and apoptosis in ataxia-telangiectasia. Int J Radiat Biol 1994; 66 : S141–9. [Google Scholar]
  7. Bertrand P, Rouillard D, Boulet A, et al. Increase of spontaneous intrachromosomal homologous recombination in mammalian cells expressing a mutant p53 protein. Oncogene 1997; 14 : 1117–22. [Google Scholar]
  8. Mekeel KL, Tang W, Kachnic LA, et al. Inactivation of p53 results in high rates of homologous recombination. Oncogene 1997; 14 : 1847–57. [Google Scholar]
  9. Gebow D, Miselis N, Liber HL. Homologous and nonhomologous recombination resulting in deletion : effects of p53 status, microhomology, and repetitive DNA length and orientation. Mol Cell Biol 2000; 20 : 4028–35. [Google Scholar]
  10. Lu X, Lozano G, Donehower LA. Activities of wildtype and mutant p53 in suppression of homologous recombination as measured by a retroviral vector system. Mutat Res 2003; 522 : 69–83. [Google Scholar]
  11. Saintigny Y, Rouillard D, Chaput B, et al. Mutant p53 proteins stimulate spontaneous and radiation-induced intrachromosomal homologous recombination independently of the alteration of the transactivation activity and of the G1 checkpoint. Oncogene 1999; 18 : 3553–63. [Google Scholar]
  12. Lambert S, Lopez BS. Characterization of mammalian RAD51 double strand break repair using non lethal dominant negative forms. EMBO J 2000; 19 : 3090–9. [Google Scholar]
  13. Wang YY, Maher VM, Liskay RM, McCormick JJ. Carcinogens can induce homologous recombination between duplicated chromosomal sequences in mouse L cells. Mol Cell Biol 1988; 8 : 196–202. [Google Scholar]
  14. Akyuz N, Boehden GS, Susse S, et al. DNA substrate dependence of p53-mediated regulation of double-strand break repair. Mol Cell Biol 2002; 22 : 6306–17. [Google Scholar]
  15. Michel B, Flores MJ, Viguera E, et al. Rescue of arrested replication forks by homologous recombination. Proc Natl Acad Sci USA 2001; 98 : 8181–8. [Google Scholar]
  16. Saintigny Y, Delacote F, Vares G, et al. Characterization of homologous recombination induced by replication inhibition in mammalian cells. EMBO J 2001; 20 : 3861–70. [Google Scholar]
  17. Saintigny Y, Lopez BS. Homologous recombination induced by replication inhibition is stimulated by expression of mutant p53. Oncogene 2002; 21 : 488–92. [Google Scholar]
  18. Janz C, Wiesmuller L. Wild-type p53 inhibits replication-associated homologous recombination. Oncogene 2002; 21 : 5929–33. [Google Scholar]
  19. Sengupta S, Linke SP, Pedeux R, et al. BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBO J 2003; 22 : 1210–22. [Google Scholar]
  20. Dudenhoffer C, Kurth M, Janus F, et al. Dissociation of the recombination control and the sequence-specific transactivation function of p53. Oncogene 1999; 18 : 5773–84. [Google Scholar]
  21. Willers H, McCarthy EE, Wu B, et al. Dissociation of p53-mediated suppression of homologous recombination from G1/S cell cycle checkpoint control. Oncogene 2000; 19 : 632–9. [Google Scholar]
  22. Linke SP, Sengupta S, Khabie N, et al. p53 interacts with hRAD51 and hRAD54, and directly modulates homologous recombination. Cancer Res 2003; 63 : 2596–605. [Google Scholar]
  23. Yoon D, Wang Y, Stapleford K, et al. P53 inhibits strand exchange and replication fork regression promoted by human Rad51. J Mol Biol 2004; 336 : 639–54. [Google Scholar]
  24. Lee S, Cavallo L, Griffith J. Human p53 binds Holliday junctions strongly and facilitates their cleavage. J Biol Chem 1997; 272 : 7532–9. [Google Scholar]
  25. Lee S, Elenbaas B, Levine A, Griffith J. p53 and its 14 kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 1995; 81 : 1013–20. [Google Scholar]
  26. Buchhop S, Gibson MK, Wang XW, et al. Interaction of p53 with the human Rad51 protein. Nucleic Acids Res 1997; 25 : 3868–74. [Google Scholar]
  27. Bertrand P, Saintigny Y, Lopez BS. p53’s double life : transactivation-independent repression of homologous recombination. Trends Genet 2004; 20 : 235–43. [Google Scholar]
  28. Dudenhoffer C, Rohaly G, Will K, et al. Specific mismatch recognition in heteroduplex intermediates by p53 suggests a role in fidelity control of homologous recombination. Mol Cell Biol 1998; 18 : 5332–42. [Google Scholar]
  29. Susse S, Janz C, Janus F, et al. Role of heteroduplex joints in the functional interactions between human Rad51 and wild-type p53. Oncogene 2000; 19 : 4500–12. [Google Scholar]
  30. Degtyareva N, Subramanian D, Griffith JD. Analysis of the binding of p53 to DNAs containing mismatched and bulged bases. J Biol Chem 2001; 276 : 8778–84. [Google Scholar]
  31. Zink D, Mayr C, Janz C, Wiesmuller L. Association of p53 and MSH2 with recombinative repair complexes during S phase. Oncogene 2002; 21 : 4788–800. [Google Scholar]
  32. Subramanian D, Griffith JD. Interactions between p53, hMSH2-hMSH6 and HMG I(Y) on Holliday junctions and bulged bases. Nucleic Acids Res 2002; 30 : 2427–34. [Google Scholar]
  33. Waldman AS, Liskay RM. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol Cell Biol 1988; 8 : 5350–7. [Google Scholar]
  34. Rayssiguier C, Thaler DS, Radman M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 1989; 342 : 396–401. [Google Scholar]
  35. Jimenez GS, Nister M, Stommel JM, et al. A transactivation-deficient mouse model provides insights into Trp53 regulation and function. Nat Genet 2000; 26 : 37–43. [Google Scholar]
  36. Komarov PG, Komarova EA, Kondratov RV, et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 1999; 285 : 1733–7. [Google Scholar]
  37. Deng C, Zhang P, Harper JW, et al. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995; 82 : 675–84. [Google Scholar]
  38. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW. The double-strand-break repair model for recombination. Cell 1983; 33 : 25–35. [Google Scholar]
  39. Rossignol JL. La recombinaison homologue : mécanismes et conséquences. Med Sci (Paris) 1990; 6 : 4–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.