Free Access
Issue
Med Sci (Paris)
Volume 20, Number 3, Mars 2004
Page(s) 298 - 303
Section M/S revues
DOI https://doi.org/10.1051/medsci/2004203298
Published online 15 March 2004
  1. Libby P. Inflammation in atherosclerosis. Nature 2002; 420 : 868–74. [Google Scholar]
  2. Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death : a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000; 20 : 1262–75. [Google Scholar]
  3. Burke AP, Kolodgie FD, Farb A, et al. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 2002; 105 : 297–303. [Google Scholar]
  4. Burke AP, Farb A, Malcom GT, et al. Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA 1999; 281 : 921–6. [Google Scholar]
  5. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002; 105 : 1135–43 [Google Scholar]
  6. Meuwissen M, Piek JJ, van der Wal AC, et al. Recurrent unstable angina after directional coronary atherectomy is related to the extent of initial coronary plaque inflammation. J Am Coll Cardiol. 2001; 37 : 1271–6. [Google Scholar]
  7. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis : the good, the bad, and the ugly. Circ Res 2002; 90 : 251–62. [Google Scholar]
  8. Gupta S, Pablo AM, Jiang X, et al. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 1997; 99 : 2752–61. [Google Scholar]
  9. Whitman SC, Ravisankar P, Daugherty A. Interleukin-18 enhances atherosclerosis in apolipoprotein E−/− mice through release of interferon-gamma. Circ Res 2002; 90 : E34–8. [Google Scholar]
  10. Mallat Z, Corbaz A, Scoazec A, et al. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation 2001; 104 : 1598–603. [Google Scholar]
  11. Lee TS, Yen HC, Pan CC, Chau LY. The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 1999; 19 : 734–42. [Google Scholar]
  12. Schonbeck U, Libby P. CD40 signaling and plaque instability. Circ Res 2001; 89 : 1092–103. [Google Scholar]
  13. Tedgui A, Mallat Z. Anti-inflammatory mechanisms in the vascular wall. Circ Res 2001; 88 : 877–87. [Google Scholar]
  14. Mallat Z, Besnard S, Duriez M, et al. Protective role of interleukin-10 in atherosclerosis. Circ Res 1999; 85 : E17–24. [Google Scholar]
  15. Smith DA, Irving SD, Sheldon J, et al. Serum levels of the antiinflammatory cytokine interleukin-10 are decreased in patients with unstable angina. Circulation 2001; 104 : 746–9. [Google Scholar]
  16. Mallat Z, Gojova A, Marchiol-Fournigault C, et al. Inhibition of transforming growth factor-b signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res 2001; 89 : 930–4. [Google Scholar]
  17. Mallat Z, Corbaz A, Scoazec A, et al. Interleukin-18/interleukin-18 binding protein signalling modulates atherosclerotic lesion development and stability. Circ Res 2001; 89 : E41–5. [Google Scholar]
  18. Tedgui A, Mallat Z. Apoptosis as a determinant of atherothrombosis. Thromb Haemost 2001; 86 : 420–6. [Google Scholar]
  19. Chang MK, Bergmark C, Laurila A, et al. Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages : evidence that oxidation-specific epitopes mediate macrophage recognition. Proc Natl Acad Sci USA 1999; 96 : 6353–8. [Google Scholar]
  20. Toschi V, Gallo G, Lettino M, et al. Tissue factor modulates thrombogenicity of human atherosclerotic plaques. Circulation 1997; 95 : 594–9. [Google Scholar]
  21. Flynn PD, Byrne CD, Baglin TP, et al. Thrombin generation by apoptotic vascular smooth muscle cells. Blood 1997; 89 : 4378–84. [Google Scholar]
  22. Bombeli T, Karsan A, Tait JF, Harlan JM. Apoptotic vascular endothelial cells become procoagulant. Blood 1997; 89 : 2429–42. [Google Scholar]
  23. Aupeix K, Hugel B, Martin T, et al. The significance of shed membrane particles during programmed cell death in vitro, and in vivo, in HIV-1 infection. J Clin Invest 1997; 99 : 1546–54. [Google Scholar]
  24. Mallat Z, Hugel B, Ohan J, et al. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques : a role for apoptosis in plaque thrombogenicity. Circulation 1999; 99 : 348–53. [Google Scholar]
  25. Kolodgie FD, Narula J, Burke AP, et al. Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 2000; 157 : 1259–68. [Google Scholar]
  26. van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994; 89 : 436–40. [Google Scholar]
  27. Kolodgie FD, Burke AP, Farb A, et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesions : insights into plaque erosion. Arterioscler Thromb Vasc Biol 2002; 22 : 1642–8. [Google Scholar]
  28. Tricot O, Mallat Z, Heymes C, et al. Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation 2000; 101 : 2450–3. [Google Scholar]
  29. Mallat Z, Tedgui A. Current perspective on the role of apoptosis in atherothrombotic disease. Circ Res 2001; 88 : 998–1003. [Google Scholar]
  30. Giesen PL, Rauch U, Bohrmann B, et al. Blood-borne tissue factor : another view of thrombosis. Proc Natl Acad Sci USA 1999; 96 : 2311–5. [Google Scholar]
  31. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient : a call for new definitions and risk assessment strategies (part I). Circulation 2003; 108 : 1664–72. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.