Accès gratuit
Numéro
Med Sci (Paris)
Volume 20, Numéro 2, Février 2004
Page(s) 207 - 212
Section M/S revues
DOI https://doi.org/10.1051/medsci/2004202207
Publié en ligne 15 février 2004
  1. Muller HJ. The remaking of chromosomes. The Collecting Net 1938; 13 : 181–95, 198.
  2. McClintock B. The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci USA 1939; 25 : 405–16.
  3. Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985; 43 : 405–13.
  4. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266 : 2011–5.
  5. Wellinger RJ, Sen D. The DNA structures at the ends of eukaryotic chromosomes. Eur J Cancer 1997; 33 : 735–49.
  6. Sandell LL, Zakian VA. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 1993; 75 : 729–39.
  7. Van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell 1998; 92 : 401–13.
  8. Blackburn EH, Gall JG. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 1978; 120 : 33–53.
  9. Klobutcher LA, Swanton MT, Donini P, Prescott DM. All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3’ terminus. Proc Natl Acad Sci USA 1981; 78 : 3015–9.
  10. Jacob NK, Skopp R, Price CM. G-overhang dynamics at Tetrahymena telomeres. Embo J 2001; 20 : 4299–308.
  11. Wellinger RJ, Wolf AJ, Zakian VA. Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase. Cell 1993; 72 : 51–60.
  12. Wellinger RJ, Éthier K, Labrecque P, Zakian VA. Evidence for a new step in telomere maintenance. Cell 1996; 85 : 423–33.
  13. Forstemann K, Hoss M, Lingner J. Telomerase-dependent repeat divergence at the 3’ ends of yeast telomeres. Nucleic Acids Res 2000; 28 : 2690–4.
  14. Makarov VL, Hirose Y, Langmore JP. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 1997; 88 : 657–66.
  15. McElligott R, Wellinger RJ. The terminal DNA structure of mammalian chromosomes. Embo J 1997; 16 : 3705–14.
  16. Wright WE, Tesmer VM, Huffman KE, Levene SD, Shay JW. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev 1997; 11 : 2801–9.
  17. Riha K, McKnight TD, Fajkus J, Vyskot B, Shippen DE. Analysis of the G-overhang structures on plant telomeres : evidence for two distinct telomere architectures. Plant J 2000; 23 : 633–41.
  18. Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell 1999; 97 : 503–14.
  19. Cimino-Reale G, Pascale E, Battiloro E, et al. The length of telomeric G-rich strand 3’-overhang measured by oligonucleotide ligation assay. Nucleic Acids Res 2001; 29 : e35.
  20. Stewart SA, Ben-Porath I, Carey VJ, et al. Erosion of the telomeric single-strand overhang at replicative senescence. Nat Genet 2003; 33 : 492–6.
  21. Murti KG, Prescott DM. Telomeres of polytene chromosomes in a ciliated protozoan terminate in duplex DNA loops. Proc Natl Acad Sci USA 1999; 96 : 14436–9.
  22. Munoz-Jordan JL, Cross GA, de Lange T, Griffith JD. T-loops at trypanosome telomeres. Embo J 2001; 20 : 579–88.
  23. Baumann P, Cech TR. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 2001; 292 : 1171–5.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.