Accès gratuit
Numéro
Med Sci (Paris)
Volume 19, Numéro 10, Octobre 2003
Page(s) 900 - 909
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20031910900
Publié en ligne 15 octobre 2003
  1. Fleischmann RD, Adams MD, White O, et al. Wholegenome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995; 269: 496–512. [Google Scholar]
  2. Gardner MJ, Hall N, Fung E, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002; 419: 498–511. [Google Scholar]
  3. Sacks D, Kamhawi S. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu Rev Microbiol 2001; 55: 453–83. [Google Scholar]
  4. Herwaldt BL. Leishmaniasis. Lancet 1999; 354: 1191–9. [Google Scholar]
  5. Magill AJ, Grogl M, Gasser RA, Jr., Sun W, Oster CN. Visceral infection caused by Leishmania tropica in veterans of Operation Desert Storm. N Engl J Med 1993; 328: 1383–7. [Google Scholar]
  6. Britto C, Ravel C, Bastien P, et al. Conserved linkage groups associated with large-scale chromosomal rearrangements between Old World and New World Leishmania genomes. Gene 1998; 222: 107–17. [Google Scholar]
  7. Myler PJ, Audleman L, deVos T, et al. Leishmania major Friedlin chromosome 1 has an unusual distribution of proteincoding genes. Proc Natl Acad Sci USA 1999; 96: 2902–6. [Google Scholar]
  8. Clayton CE. Life without transcriptional control ? From fly to man and back again. EMBO J 2002; 21: 1881–8. [Google Scholar]
  9. McKean PG, Denny PW, Knuepfer E, Keen JK, Smith DF. Phenotypic changes associated with deletion and overexpression of a stage-regulated gene family in Leishmania. Cell Microbiol 2001; 3: 511–23. [Google Scholar]
  10. Sereno D, Lemesre JL. Axenically cultured amastigote forms as an in vitro model for investigation of antileishmanial agents. Antimicrob Agents Chemother 1997; 41: 972–6. [Google Scholar]
  11. Lamontagne J, Papadopoulou B. Developmental regulation of spliced leader RNA gene in Leishmania donovani amastigotes is mediated by specific polyadenylation. J Biol Chem 1999; 274: 6602–9. [Google Scholar]
  12. Wu Y, El Fakhry Y, Sereno D, Tamar S, Papadopoulou B. A new developmentally regulated gene family in Leishmania amastigotes encoding a homolog of amastin surface proteins. Mol Biochem Parasitol 2000; 110: 345–57. [Google Scholar]
  13. Charest H, Zhang WW, Matlashewski G. The developmental expression of Leishmania donovani A2 amastigote-specific genes is post-transcriptionally mediated and involves elements located in the 3’- untranslated region. J Biol Chem 1996; 271: 17081–90. [Google Scholar]
  14. Bellatin JA, Murray AS, Zhao M, McMaster WR. Leishmania mexicana: identification of genes that are preferentially expressed in amastigotes. Exp Parasitol 2002; 100: 44–53. [Google Scholar]
  15. Schoolnik GK. Functional and comparative genomics of pathogenic bacteria. Curr Opin Microbiol 2002; 5: 20–6. [Google Scholar]
  16. Rathod PK, Ganesan K, Hayward RE, Bozdech Z, DeRisi JL. DNA microarrays for malaria. Trends Parasitol 2002; 18: 39–45. [Google Scholar]
  17. Diehl S, Diehl F, El-Sayed N, Clayton C, Hoheisel J. Analysis of stage-specific gene expression in the bloodstream and the procyclic form of Trypanosoma brucei using a genomic DNA-microarray. Mol Biochem Parasitol 2002; 123: 115. [Google Scholar]
  18. Almeida R, Norrish A, Levick M, et al. From genomes to vaccines: Leishmania as a model. Philos Trans R Soc Lond B Biol Sci 2002; 357: 5–11. [Google Scholar]
  19. Beverley SM, Akopyants NS, Goyard S, et al. Putting the Leishmania genome to work: functional genomics by transposon trapping and expression profiling. Philos Trans R Soc Lond B Biol Sci 2002; 357: 47–53. [Google Scholar]
  20. Talaat AM, Howard ST, Hale W 4th, Lyons R, Garner H, Johnston SA. Genomic DNA standards for gene expression profiling in Mycobacterium tuberculosis. Nucleic Acids Res 2002; 30: E104. [Google Scholar]
  21. Chu S, DeRisi J, Eisen M, et al. The transcriptional program of sporulation in budding yeast. Science 1998; 282: 699–705. [Google Scholar]
  22. Boucher N, Wu Y, Dumas C, et al. A common mechanism of stageregulated gene expression in Leishmania mediated by a conserved 3’- untranslated region element. J Biol Chem 2002; 277: 19511–20. [Google Scholar]
  23. El Fakhry Y, Ouellette M, Papadopoulou B. A proteomic approach to identify developmentally regulated proteins in Leishmania infantum. Proteomics 2002; 2: 1007–17. [Google Scholar]
  24. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotopecoded affinity tags. Nat Biotechnol 1999; 17: 994–9. [Google Scholar]
  25. Washburn MP, Wolters D, Yates JR, 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 2001; 19: 242–7. [Google Scholar]
  26. Zhang WW, Matlashewski G. Characterization of the A2- A2rel gene cluster in Leishmania donovani: involvement of A2 in visceralization during infection. Mol Microbiol 2001; 39: 935–48. [Google Scholar]
  27. Carlton JM, Angiuoli SV, Suh BB, et al. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 2002; 419: 512–9. [Google Scholar]
  28. Kündig C, Haimeur A, Légaré D, Papadopoulou B, Ouellette M. Increased transport of pteridines compensates for mutations in the high affinity folate transporter and contributes to methotrexate resistance in the protozoan parasite Leishmania tarentolae. EMBO J 1999; 18: 2342–51. [Google Scholar]
  29. Myler PJ, Beverley SM, Cruz AK, et al. The Leishmania genome project: new insights into gene organization and function. Med Microbiol Immunol (Berl) 2001; 190: 9–12. [Google Scholar]
  30. Turco SJ, Descoteaux A. The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol 1992; 46: 65–94. [Google Scholar]
  31. Matte C, Olivier M. Leishmania-induced cellular recruitment during the early inflammatory response: modulation of proinflammatory mediators. J Infect Dis 2002; 185: 673–81. [Google Scholar]
  32. Pelletier I, Sato S. Specific recognition and cleavage of galectin-3 by Leishmania major through species-specific polygalactose epitope. J Biol Chem 2002; 277: 17663–70. [Google Scholar]
  33. Sato S. Galectin as a molecule of danger signal, which could evoke immune response to infection. Trends Glycosci Glycotechnol 2003 (sous presse). [Google Scholar]
  34. Colmenares M, Puig-Kroger A, Pello OM, Corbi AL, Rivas L. Dendritic cell (DC)- specific Intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN, CD209), a C-type surface lectin in human DCs, is a receptor for Leishmania amastigotes. J Biol Chem 2002; 277: 36766–9. [Google Scholar]
  35. Blanchette J, Racette N, Faure R, Siminovitch KA, Olivier M. Leishmaniainduced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-gamma-triggered JAK2 activation. Eur J Immunol 1999; 29: 3737–44. [Google Scholar]
  36. Forget G, Siminovitch KA, Brochu S, Rivest S, Radzioch D, Olivier M. Role of host phosphotyrosine phosphatase SHP-1 in the development of murine leishmaniasis. Eur J Immunol 2001; 31: 3185–96. [Google Scholar]
  37. Buates S, Matlashewski G. General suppression of macrophage gene expression during Leishmania donovani infection. J Immunol 2001; 166: 3416–22. [Google Scholar]
  38. Matte C, Marquis JF, Blanchette J, et al. Peroxovanadium-mediated protection against murine leishmaniasis: role of the modulation of nitric oxide. Eur J Immunol 2000; 30: 2555–64. [Google Scholar]
  39. Légaré D, Cayer S, Singh AK, Richard D, Papadopoulou B, Ouellette M. ABC proteins of Leishmania. J Bioenerg Biomembr 2001; 33: 469–74. [Google Scholar]
  40. Haimeur A, Brochu C, Genest P, Papadopoulou B, Ouellette M. Amplification of the ABC transporter gene PGPA and increased trypanothione levels in potassium antimonyl tartrate (SbIII) resistant Leishmania tarentolae. Mol Biochem Parasitol 2000; 108: 131–5. [Google Scholar]
  41. Légaré D, Richard D, Mukhopadhyay R, et al. The Leishmania ABC protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem 2001; 276: 26301–7. [Google Scholar]
  42. Drummelsmith J, Brochu V, Girard I, Messier N, Ouellette M. Proteome mapping of the protozoan parasite Leishmania and application to the study of drug targets and resistance mechanisms. Mol Cell Proteomics 2003; 2: 146–55. [Google Scholar]
  43. Dumas C, Ouellette M, Tovar J, et al. Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. EMBO J 1997; 16: 2590–8. [Google Scholar]
  44. Ullu E, Djikeng A, Shi H, Tschudi C. RNA interference: advances and questions. Philos Trans R Soc Lond B Biol Sci 2002; 357: 65–70. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.