Free Access
Issue
Med Sci (Paris)
Volume 19, Number 3, Mars 2003
Page(s) 309 - 317
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2003193309
Published online 15 March 2003
  1. Karsenti E, Vernos I. The mitotic spindle: a selfmade machine. Science 2001; 294: 543–7. [Google Scholar]
  2. Labbé JC, Capony JP, Caput D, et al. MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B. EMBO J 1989; 8: 3053–8. [Google Scholar]
  3. Glotzer M, Murray AW, Kirschner MW. Cyclin is degraded by the ubiquitin pathway. Nature 1991; 349: 132–8. [Google Scholar]
  4. Peters JM. Subunits and substrates of the anaphase-promoting complex. Exp Cell Res 1999; 248: 339–49. [Google Scholar]
  5. Lorca T, Castro A, Martinez AM, et al. Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts. EMBO J 1998; 17: 3565–75. [Google Scholar]
  6. Holloway SL, Glotzer M, King RW, Murray AW. Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 1993; 73: 1393–402. [Google Scholar]
  7. Zou H, McGarry TJ, Bernal T, Kirschner MW. Identification of a vertebrate sisterchromatid separation inhibitor involved in transformation and tumorigenesis. Science 1999; 285: 418–22. [Google Scholar]
  8. Hirano T. Chromosome cohesion, condensation, and separation. Annu Rev Biochem 2000; 69: 115–44. [Google Scholar]
  9. Uhlmann F, Lottspeich F, Nasmyth K. Sisterchromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 1999; 400: 37–42. [Google Scholar]
  10. Felix MA, Labbé JC, Dorée M, Hunt T, Karsenti E. Triggering of cyclin degradation in interphase extracts of amphibian eggs by cdc2 kinase. Nature 1990; 346: 379–82. [Google Scholar]
  11. Li R, Murray AW. Feedback control of mitosis in budding yeast. Cell 1991; 66: 519–31. [Google Scholar]
  12. Hoyt MA, Totis L, Roberts BT. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 1991; 66: 507–17. [Google Scholar]
  13. Weiss E, Winey M. The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 1996; 132: 111–23. [Google Scholar]
  14. Hardwick KG, Weiss E, Luca FC, Winey M, Murray AW. Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 1996; 273: 953–6. [Google Scholar]
  15. Taylor SS, Ha E, McKeon F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1- related protein kinase. J Cell Biol 1998; 142: 1–11. [Google Scholar]
  16. Abrieu A, Kahana JA, Wood KW, Cleveland DW. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 2000; 102: 817–26. [Google Scholar]
  17. Chan GK, Jablonski SA, Starr DA, Goldberg ML, Yen TJ. Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores. Nat Cell Biol 2000; 2: 944–7. [Google Scholar]
  18. Basto R, Gomes R, Karess RE. Rough deal and Zw10 are required for the metaphase checkpoint in Drosophila. Nat Cell Biol 2000; 2: 939–43. [Google Scholar]
  19. Minshull J, Sun H, Tonks NK, Murray AW. A MAP kinasedependent spindle assembly checkpoint in Xenopus egg extracts. Cell 1994; 79: 475–86. [Google Scholar]
  20. Li Y, Gorbea C, Mahaffey D, Rechsteiner M, Benezra R. MAD2 associates with the cyclosome/anaphasepromoting complex and inhibits its activity. Proc Natl Acad Sci USA 1997; 94: 12431–6. [Google Scholar]
  21. Kallio M, Weinstein J, Daum JR, Burke DJ, Gorbsky GJ. Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphasepromoting complex, and is involved in regulating anaphase onset and late mitotic events. J Cell Biol 1998; 141: 1393–406. [Google Scholar]
  22. Hwang LH, Lau LF, Smith DL, et al. Budding yeast Cdc20: a target of the spindle checkpoint. Science 1998; 279: 1041–4. [Google Scholar]
  23. Kim SH, Lin DP, Matsumoto S, Kitazono A, Matsumoto T. Fission yeast Slp1: an effector of the Mad2- dependent spindle checkpoint. Science 1998; 279: 1045–7. [Google Scholar]
  24. Wang Y, Burke DJ. Checkpoint genes required to delay cell division in response to nocodazole respond to impaired kinetochore function in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1995; 15: 6838–44. [Google Scholar]
  25. Tavormina PA, Burke DJ. Cell cycle arrest in cdc20 mutants of Saccharomyces cerevisiae is independent of Ndc10p and kinetochore function but requires a subset of spindle checkpoint genes. Genetics 1998; 148: 1701–13. [Google Scholar]
  26. Rieder CL, Cole RW, Khodjakov A, Sluder G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 1995; 130: 941–8. [Google Scholar]
  27. Dobie KW, Hari KL, Maggert KA, Karpen GH. Centromere proteins and chromosome inheritance: a complex affair. Curr Opin Genet Dev 1999; 9: 206–17. [Google Scholar]
  28. Hoffman DB, Pearson CG, Yen TJ, Howell BJ, Salmon ED. Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores. Mol Biol Cell 2001; 12: 1995–2009. [Google Scholar]
  29. Gorbsky GJ, Chen RH, Murray AW. Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase. J Cell Biol 1998; 141: 1193–205. [Google Scholar]
  30. Campbell MS, Gorbsky GJ. Microinjection of mitotic cells with the 3F3/2 antiphosphoepitope antibody delays the onset of anaphase. J Cell Biol 1995; 129: 1195–204. [Google Scholar]
  31. Li X, Nicklas RB. Tensionsensitive kinetochore phosphorylation and the chromosome distribution checkpoint in praying mantid spermatocytes. J Cell Sci 1997; 110: 537–45. [Google Scholar]
  32. Stern BM, Murray AW. Lack of tension at kinetochores activates the spindle checkpoint in budding yeast. Curr Biol 2001; 11: 1462–7. [Google Scholar]
  33. Biggins S, Murray AW. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev 2001; 15: 3118–29. [Google Scholar]
  34. Basu J, Bousbaa H, Logarinho E, et al. Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J Cell Biol 1999; 146: 13–28. [Google Scholar]
  35. Waters JC, Chen RH, Murray AW, Salmon ED. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J Cell Biol 1998; 141: 1181–91. [Google Scholar]
  36. Skoufias DA, Andreassen PR, Lacroix FB, Wilson L, Margolis RL. Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc Natl Acad Sci USA 2001; 98: 4492–7. [Google Scholar]
  37. Abrieu A, Magnaghi-Jaulin L, Kahana JA, et al. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 2001; 106: 83–93. [Google Scholar]
  38. Wassmann K, Benezra R. Mitotic checkpoints: from yeast to cancer. Curr Opin Genet Dev 2001; 11: 83–90. [Google Scholar]
  39. Howell BJ, Hoffman DB, Fang G, Murray AW, Salmon ED. Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J Cell Biol 2000; 150: 1233–50. [Google Scholar]
  40. Rieder CL, Khodjakov A, Paliulis LV, Fortier TM, Cole RW, Sluder G. Mitosis in vertebrate somatic cells with two spindles: implications for the metaphase/anaphase transition checkpoint and cleavage. Proc Natl Acad Sci USA 1997; 94: 5107–12. [Google Scholar]
  41. Clute P, Pines J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1999; 1: 82–7. [Google Scholar]
  42. Huang J, Raff JW. The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J 1999; 18: 2184–95. [Google Scholar]
  43. Wakefield JG, Huang JY, Raff JW. Centrosomes have a role in regulating the destruction of cyclin B in early Drosophila embryos. Curr Biol 2000; 10: 367–70. [Google Scholar]
  44. Sudakin V, Chan GK, Yen TJ. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 2001; 154: 925–36. [Google Scholar]
  45. Dobles M, Liberal V, Scott ML, Benezra R, Sorger PK. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 2000; 101: 635–45. [Google Scholar]
  46. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396: 643–9. [Google Scholar]
  47. Cahill DP, Lengauer C, Yu J, et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998; 392: 300–3. [Google Scholar]
  48. Jin DY, Spencer F, Jeang KT. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 1998; 93: 81–91. [Google Scholar]
  49. Li Y, Benezra R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 1996; 274: 246–8. [Google Scholar]
  50. Michel LS, Liberal V, Chatterjee A, et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 2001; 409: 355–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.