Accès gratuit
Med Sci (Paris)
Volume 19, Numéro 3, Mars 2003
Page(s) 309 - 317
Section M/S Revues
Publié en ligne 15 mars 2003
  1. Karsenti E, Vernos I. The mitotic spindle: a selfmade machine. Science 2001; 294: 543–7. [Google Scholar]
  2. Labbé JC, Capony JP, Caput D, et al. MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B. EMBO J 1989; 8: 3053–8. [Google Scholar]
  3. Glotzer M, Murray AW, Kirschner MW. Cyclin is degraded by the ubiquitin pathway. Nature 1991; 349: 132–8. [Google Scholar]
  4. Peters JM. Subunits and substrates of the anaphase-promoting complex. Exp Cell Res 1999; 248: 339–49. [Google Scholar]
  5. Lorca T, Castro A, Martinez AM, et al. Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts. EMBO J 1998; 17: 3565–75. [Google Scholar]
  6. Holloway SL, Glotzer M, King RW, Murray AW. Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 1993; 73: 1393–402. [Google Scholar]
  7. Zou H, McGarry TJ, Bernal T, Kirschner MW. Identification of a vertebrate sisterchromatid separation inhibitor involved in transformation and tumorigenesis. Science 1999; 285: 418–22. [Google Scholar]
  8. Hirano T. Chromosome cohesion, condensation, and separation. Annu Rev Biochem 2000; 69: 115–44. [Google Scholar]
  9. Uhlmann F, Lottspeich F, Nasmyth K. Sisterchromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 1999; 400: 37–42. [Google Scholar]
  10. Felix MA, Labbé JC, Dorée M, Hunt T, Karsenti E. Triggering of cyclin degradation in interphase extracts of amphibian eggs by cdc2 kinase. Nature 1990; 346: 379–82. [Google Scholar]
  11. Li R, Murray AW. Feedback control of mitosis in budding yeast. Cell 1991; 66: 519–31. [Google Scholar]
  12. Hoyt MA, Totis L, Roberts BT. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 1991; 66: 507–17. [Google Scholar]
  13. Weiss E, Winey M. The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 1996; 132: 111–23. [Google Scholar]
  14. Hardwick KG, Weiss E, Luca FC, Winey M, Murray AW. Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 1996; 273: 953–6. [Google Scholar]
  15. Taylor SS, Ha E, McKeon F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1- related protein kinase. J Cell Biol 1998; 142: 1–11. [Google Scholar]
  16. Abrieu A, Kahana JA, Wood KW, Cleveland DW. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 2000; 102: 817–26. [Google Scholar]
  17. Chan GK, Jablonski SA, Starr DA, Goldberg ML, Yen TJ. Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores. Nat Cell Biol 2000; 2: 944–7. [Google Scholar]
  18. Basto R, Gomes R, Karess RE. Rough deal and Zw10 are required for the metaphase checkpoint in Drosophila. Nat Cell Biol 2000; 2: 939–43. [Google Scholar]
  19. Minshull J, Sun H, Tonks NK, Murray AW. A MAP kinasedependent spindle assembly checkpoint in Xenopus egg extracts. Cell 1994; 79: 475–86. [Google Scholar]
  20. Li Y, Gorbea C, Mahaffey D, Rechsteiner M, Benezra R. MAD2 associates with the cyclosome/anaphasepromoting complex and inhibits its activity. Proc Natl Acad Sci USA 1997; 94: 12431–6. [Google Scholar]
  21. Kallio M, Weinstein J, Daum JR, Burke DJ, Gorbsky GJ. Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphasepromoting complex, and is involved in regulating anaphase onset and late mitotic events. J Cell Biol 1998; 141: 1393–406. [Google Scholar]
  22. Hwang LH, Lau LF, Smith DL, et al. Budding yeast Cdc20: a target of the spindle checkpoint. Science 1998; 279: 1041–4. [Google Scholar]
  23. Kim SH, Lin DP, Matsumoto S, Kitazono A, Matsumoto T. Fission yeast Slp1: an effector of the Mad2- dependent spindle checkpoint. Science 1998; 279: 1045–7. [Google Scholar]
  24. Wang Y, Burke DJ. Checkpoint genes required to delay cell division in response to nocodazole respond to impaired kinetochore function in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1995; 15: 6838–44. [Google Scholar]
  25. Tavormina PA, Burke DJ. Cell cycle arrest in cdc20 mutants of Saccharomyces cerevisiae is independent of Ndc10p and kinetochore function but requires a subset of spindle checkpoint genes. Genetics 1998; 148: 1701–13. [Google Scholar]
  26. Rieder CL, Cole RW, Khodjakov A, Sluder G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 1995; 130: 941–8. [Google Scholar]
  27. Dobie KW, Hari KL, Maggert KA, Karpen GH. Centromere proteins and chromosome inheritance: a complex affair. Curr Opin Genet Dev 1999; 9: 206–17. [Google Scholar]
  28. Hoffman DB, Pearson CG, Yen TJ, Howell BJ, Salmon ED. Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores. Mol Biol Cell 2001; 12: 1995–2009. [Google Scholar]
  29. Gorbsky GJ, Chen RH, Murray AW. Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase. J Cell Biol 1998; 141: 1193–205. [Google Scholar]
  30. Campbell MS, Gorbsky GJ. Microinjection of mitotic cells with the 3F3/2 antiphosphoepitope antibody delays the onset of anaphase. J Cell Biol 1995; 129: 1195–204. [Google Scholar]
  31. Li X, Nicklas RB. Tensionsensitive kinetochore phosphorylation and the chromosome distribution checkpoint in praying mantid spermatocytes. J Cell Sci 1997; 110: 537–45. [Google Scholar]
  32. Stern BM, Murray AW. Lack of tension at kinetochores activates the spindle checkpoint in budding yeast. Curr Biol 2001; 11: 1462–7. [Google Scholar]
  33. Biggins S, Murray AW. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev 2001; 15: 3118–29. [Google Scholar]
  34. Basu J, Bousbaa H, Logarinho E, et al. Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J Cell Biol 1999; 146: 13–28. [Google Scholar]
  35. Waters JC, Chen RH, Murray AW, Salmon ED. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J Cell Biol 1998; 141: 1181–91. [Google Scholar]
  36. Skoufias DA, Andreassen PR, Lacroix FB, Wilson L, Margolis RL. Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc Natl Acad Sci USA 2001; 98: 4492–7. [Google Scholar]
  37. Abrieu A, Magnaghi-Jaulin L, Kahana JA, et al. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 2001; 106: 83–93. [Google Scholar]
  38. Wassmann K, Benezra R. Mitotic checkpoints: from yeast to cancer. Curr Opin Genet Dev 2001; 11: 83–90. [Google Scholar]
  39. Howell BJ, Hoffman DB, Fang G, Murray AW, Salmon ED. Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J Cell Biol 2000; 150: 1233–50. [Google Scholar]
  40. Rieder CL, Khodjakov A, Paliulis LV, Fortier TM, Cole RW, Sluder G. Mitosis in vertebrate somatic cells with two spindles: implications for the metaphase/anaphase transition checkpoint and cleavage. Proc Natl Acad Sci USA 1997; 94: 5107–12. [Google Scholar]
  41. Clute P, Pines J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1999; 1: 82–7. [Google Scholar]
  42. Huang J, Raff JW. The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J 1999; 18: 2184–95. [Google Scholar]
  43. Wakefield JG, Huang JY, Raff JW. Centrosomes have a role in regulating the destruction of cyclin B in early Drosophila embryos. Curr Biol 2000; 10: 367–70. [Google Scholar]
  44. Sudakin V, Chan GK, Yen TJ. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 2001; 154: 925–36. [Google Scholar]
  45. Dobles M, Liberal V, Scott ML, Benezra R, Sorger PK. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 2000; 101: 635–45. [Google Scholar]
  46. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396: 643–9. [Google Scholar]
  47. Cahill DP, Lengauer C, Yu J, et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998; 392: 300–3. [Google Scholar]
  48. Jin DY, Spencer F, Jeang KT. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 1998; 93: 81–91. [Google Scholar]
  49. Li Y, Benezra R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 1996; 274: 246–8. [Google Scholar]
  50. Michel LS, Liberal V, Chatterjee A, et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 2001; 409: 355–9. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.