Accès gratuit
Numéro
Med Sci (Paris)
Volume 19, Numéro 2, Février 2003
Page(s) 187 - 199
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2003192187
Publié en ligne 15 février 2003
  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70 [Google Scholar]
  2. Fashema SJ, Thomas SM. Signalling by adhesion receptors. Nat Cell Biol 2000; 2: E225–36 [Google Scholar]
  3. Baron V, Lebrun P. Coopération entre les intégrines et les récepteurs à activité tyrosine kinase. Med Sci 2001; 17: 111–4 [Google Scholar]
  4. Rassoulzadegan M, Cowie A, Carr A, Glaichenhaus N, Kamen R, Cuzin F. The roles of individual polyoma virus early proteins in oncogenic transformation. Nature 1982; 300: 713–8 [Google Scholar]
  5. Le Peuch C, Dorée M. Le temps du cycle cellulaire. Med Sci 2000; 16: 461–8 [Google Scholar]
  6. Sherr CJ, Roberts JM. Cdk inhibitors: positive and negative regulators of G1- phase progression. Genes Dev 1999; 13: 1501–22. [Google Scholar]
  7. Sicinski P, Donaher JL, Parker SB, et al. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 1995; 82: 621–30. [Google Scholar]
  8. Tsutsui T, Heabi B, Moons DS, et al. Targeted disruption of Cdk4 delays cell cycle entry with enhanced p27Kip1 activity. Mol Cell Biol 1999; 19: 7011–9. [Google Scholar]
  9. Geng Y, Yu Q, Sicinska E, et al. Deletion of the p27Kip1 gene restores normal development in cyclin D1- deficient mice. Proc Natl Acad Sci USA 2001; 98: 194–9. [Google Scholar]
  10. Barnes EA, Kong M, Ollendorff V, Donoghue DJ. Patched 1 interacts with cyclin B1 to regulate cell cycle progression. EMBO J 2001; 20: 2214–23 [Google Scholar]
  11. Sherr CJ. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2001; 2: 721–37. [Google Scholar]
  12. Motokura T, Bloom T, Goo- Kim H, et al. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature 1991; 350: 512–5. [Google Scholar]
  13. Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV. Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 1994; 369: 669–71. [Google Scholar]
  14. Bodrug SE, Warner BJ, Bath ML, Lindeman GJ, Arris AW, Adams JM. Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J 1994; 13: 2124–30. [Google Scholar]
  15. Lovec H, Grzeschiczk A, Kowalski MB, Moroy T. Cyclin D1/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J 1994; 13: 3487–95. [Google Scholar]
  16. Blanchard JM. Mécanismes moléculaires de la transformation oncogénique: quoi de neuf ? Bull Cancer 2002; 8 : 9–16. [Google Scholar]
  17. Fishel R, Wilson T. MutS homologs in mammalian cells. Curr Opin Genet Dev 1997; 7: 105–13. [Google Scholar]
  18. Kolodner R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev 1996; 10: 1433–42. [Google Scholar]
  19. Leach FS, Nicolaides NC, Papadopoulos N, et al. Mutations of a MutS homolog in hereditary nonpolyposis colorectal cancer. Cell 1993; 75: 1215–25. [Google Scholar]
  20. Fishel R, Lescoe, MK, Rao MR, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993; 75: 1027–38. [Google Scholar]
  21. De Wind N, Dekker M, Berns A, Radman M, Riele H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 1995; 82: 321–30. [Google Scholar]
  22. Edelmann WE, Yang K, Umar A, et al. Mutation in the mismatch repair gene Msh6 causes cancer susceptibility. Cell 1997; 91: 467–77. [Google Scholar]
  23. De Wind N, Dekker M, Claij N, et al. HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nat Genet 1999; 23: 359–62. [Google Scholar]
  24. Wang Y, Cortez D, Yazdi P, et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 2000; 14: 927–39. [Google Scholar]
  25. Zhang H, Tombline G, Weber BL. BRCA1, BRCA2, and DNA damage response: collision or collusion? Cell 1998; 92: 433–6. [Google Scholar]
  26. Feunteun J. La prédisposition héréditaire au cancer du sein liée à BRCA1 et BRCA2: une maladie de la réponse aux lésions génotoxiques ? Med Sci 1999; 15: 38–44. [Google Scholar]
  27. Welcsh PL, Owens KN, King MC. Insights into the functions of BRCA1 and BRCA2. Trends Genet 2000; 16: 69–74. [Google Scholar]
  28. Wang Q, Zhang H, Fishel R, Greene MI. BRCA1 and cell signaling. Oncogene 2000; 19: 6152–8. [Google Scholar]
  29. Zheng L, Li S, Boyer TG, Lee WH. Lessons learned from BRCA1 and BRCA2. Oncogene 2000; 19: 6159–75. [Google Scholar]
  30. Bay JO, Uhrhammer N, Hall J, Stoppa-Lyonnet D, Bignon YJ. Fonctions de la protéine ATM et aspects phénotypiques de l’ataxietélangiectasie. Med Sci 1999; 15: 1086–95. [Google Scholar]
  31. Shiloh Y. ATM and ATR: networking cellular responses to DNA damage. Curr Opin Genet Dev 2001; 11: 71–7. [Google Scholar]
  32. Gradia S, Acharya S, Fishel R. The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch. Cell 1997; 91: 995–1005. [Google Scholar]
  33. Fishel R. Mismatch repair, molecular switches, and signal transduction. Genes Dev 1998; 12: 2096–101. [Google Scholar]
  34. Fishel R. Signaling mismatch repair in cancer. Nat Med 1999; 5: 1239–41. [Google Scholar]
  35. Shih IM, Zhou W, Goodman SN, Lengauer C, Kinzler KW, Vogelstein B. Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res 2001; 61: 818–22. [Google Scholar]
  36. Jeanteur P. Le rôle d’APC dans la cancérogenèse colique: en plein dans le Myc! Bull Cancer 1998; 85: 925–8. [Google Scholar]
  37. Laurent-Puig P, Blons H. Mutations du gène APC et instabilité génétique. Med Sci 2001; 17: 954. [Google Scholar]
  38. Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 2001; 1 : 55–67. [Google Scholar]
  39. Samowitz WS, Powers MD, Spirio LN, et al. β-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. Cancer Res 1999; 59: 1442–4. [Google Scholar]
  40. Kaplan KB, Burds AA, Swedlow JR, Bekir SS, Sorger PK, Näthke IS. A role for the adenomatous polyposis coli in chromosome segregation. Nat Cell Biol 2001; 3: 429–32. [Google Scholar]
  41. Fodde R, Kuipers J, Rosenberg C, et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 2001; 3: 433–8. [Google Scholar]
  42. Näthke IS, Adams CL, Polakis P, Sellin JH, Nelson WJ. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Biol 1996; 134: 165–79. [Google Scholar]
  43. Mimori-Kiyosue Y, Shiina N, Tsukita S. Adenomatous polyposis coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J Cell Biol 2000; 148: 505–17. [Google Scholar]
  44. Peter M, Magnaghi-Jaulin L, Castro A, et al. Quand la dynamique chromosomique contrôle la division cellulaire. Pathol Biol 2001; 49: 649–54. [Google Scholar]
  45. Abrieu A, Dorée M. La cohésion des chromatidessoeurs et sa régulation au cours du cycle cellulaire. Med Sci 2001; 17: 353–4. [Google Scholar]
  46. Nigg E. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2001; 2:21–32. [Google Scholar]
  47. Gardner RD, Burke DJ. The spindle checkpoint: two transitions, two pathways. Trends Cell Biol 2000; 10: 154–8. [Google Scholar]
  48. Jallepalli PV, Lengauer C. Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer 2001; 1: 109–17. [Google Scholar]
  49. Cahill DP, Lengauer C, Yu J, et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998; 392: 300–3. [Google Scholar]
  50. Gemma A, Seike M, Seike Y, et al. Somatic mutation of the hBUB1 mitotic checkpoint gene in primary lung cancer. Genes Chrom Cancer 2000; 29: 213–8. [Google Scholar]
  51. Michel LS, Liberal V, Chatterjee A, et al. MAD2 haplo-insufficiency causes premature anaphase and chromosomal instability in mammalian cells. Nature 2001; 409: 355–9. [Google Scholar]
  52. Kalitsis P, Earle E, Fowler KJ, Choo A. Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev 2000; 14: 2277–82. [Google Scholar]
  53. Jallepalli PV, Waizenegger IC, Bunz F, et al. Securin is required for chromosomal stability in human cells. Cell 2001; 105: 445–7. [Google Scholar]
  54. Rousseau D. eIF-4E, régulation de la traduction et progression tumorale. Med Sci 2001; 17: 336–43. [Google Scholar]
  55. Hunter T. Signaling-2000 and beyond. Cell 2000; 100: 113–27. [Google Scholar]
  56. Takisawa H, Mimura S, Kubota Y. Eukaryotic DNA replication: from prereplication complex to initiation complex. Curr Opin Cell Biol 2000; 12: 690–6. [Google Scholar]
  57. Kelly TJ, Brown GW. Regulation of chromosome replication. Annu Rev Biochem 2000; 69: 829–80. [Google Scholar]
  58. Bulavin DV, Amundson SA, Fornace Jr AJ. P38 and Chk1 kinases: different conductors for the G2/M checkpoint symphony. Curr Opin Genet Dev 2002; 12: 92–7. [Google Scholar]
  59. Scheid MP, Woodgett JR. PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol 2001; 2: 760–8. [Google Scholar]
  60. Howlett NG, Tanigushi T, Olson S, et al. Biallelic inactivation of BRCA-2 in Fanconi anemia. Science 2002; 297: 606–9. [Google Scholar]
  61. Jeanteur P. L’anémie de Fanconi et les gènes BRCA: même combat ? Bull Cancer 2002; 89: 917–8 [Google Scholar]
  62. Groisman I, Huang YS, Mendez P, Cao Q, Theurkauf W, Richter JD. CPEB, Maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell 2000; 103: 435–47. [Google Scholar]
  63. Fu L, Pelicano H, Liu J, Huang P, Lee CC. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 2002; 111: 41–50. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.