Accès gratuit
Med Sci (Paris)
Volume 18, Numéro 8-9, Août–Septembre 2002
Page(s) 853 - 860
Section M/S Revues : Articles De Synthèse
Publié en ligne 15 août 2002
  1. Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407 : 770–6. [Google Scholar]
  2. Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 1998; 5 : 551–62. [Google Scholar]
  3. Schlegel RA, Williamson P. Phosphatidylserine, a death knell. Cell Death Differ 2001; 8 : 551–3. [Google Scholar]
  4. Zwaal RFA, Schroit AJ. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 1997; 89 : 1121–32. [Google Scholar]
  5. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosisinducing factor. Nature 1999; 397 : 441–6. [Google Scholar]
  6. Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001; 2 : 589–98. [Google Scholar]
  7. Chung S, Gumienny TL, Hengartner MO, Driscoll M. A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nat Cell Biol 2000; 2 : 931–7. [Google Scholar]
  8. Moynault A, Luciani MF, Chimini G. ABCI, the mammalian homologue of the engulfment gene ced-7, is required during phagocy-tosis of both necrotic and apoptotic cells. Trends Biochem Sci 1998; 26 : 629–35. [Google Scholar]
  9. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 2000; 405 : 85–90. [Google Scholar]
  10. Tepper AD, Ruurs P, Wiedmer T, Sims PJ, Borst J, van Blitterswijk WJ. Sphingomyelin hydrolysis to ceramide during the execution phase of apoptosis results from phospholipid scrambling and alters cell-surface morphology. J Cell Biol 2000; 150 : 155–64. [Google Scholar]
  11. Duvall E, Wyllie AH, Morris RG. Macrophage recognition of cells undergoing programmed cell death (apoptosis). Immunology 1985; 56 : 351–8. [Google Scholar]
  12. Morris RG, Hargreaves AD, Duvall E, Wyllie AH. Hormone-induced cell death. 2. Surface changes in thymocytes undergoing apoptosis. Am J Pathol 1984; 115 : 426–36. [Google Scholar]
  13. Savill JS, Henson PM, Haslett C. Phagocytosis of aged human neutrophils by macrophages is mediated by a novel «chargesensitive» recognition mechanism. J Clin Invest 1989; 84 : 1518–27. [Google Scholar]
  14. Krieger M, Stern DM. Series introduction: multiligand receptors and human disease. J Clin Invest 2001; 108 : 645–7. [Google Scholar]
  15. Febbraio M, Hajjar D P, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 2001; 108 : 785–91. [Google Scholar]
  16. Krieger M. Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. J Clin Invest 2001; 108 : 793–7. [Google Scholar]
  17. Platt N, Gordon S. Is the class A macrophage scavenger receptor (SR-A) multifunctional? The mouse’s tale. J Clin Invest 2001; 108 : 649–54. [Google Scholar]
  18. Dini L, Lentini A, Diez GD, et al. Phagocytosis of apoptotic bodies by liver endothelial cells. J Cell Sci 1995; 108 : 967–73. [Google Scholar]
  19. Van der Flier A, Sonnenberg A. Function and interactions of integrins. Cell Tissue Res 2001; 305 : 285–98. [Google Scholar]
  20. Savill J, Dransfield I, Hogg N, Haslett C. Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 1990; 343 : 170–3. [Google Scholar]
  21. Albert ML, Pearce SF, Francisco LM, et al. Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and crosspresent antigens to cytotoxic T lymphocytes. J Exp Med 1998; 188 : 1359–68. [Google Scholar]
  22. Savill J, Hogg N, Ren Y, Haslett C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest 1992; 90 : 1513–22. [Google Scholar]
  23. Finnemann SC, Rodriguez-Boulan E. Macrophage and retinal pigment epithelium phagocytosis: apoptotic cells and photoreceptors compete for αvβ3 and αvβ5 integrins, and protein kinase C regulates αvβ5 binding and cytoskeletal linkage. J Exp Med 1999; 190 : 861–74. [Google Scholar]
  24. Platt N, Suzuki H, Kurihara Y, Kodama T, Gordon S. Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc Natl Acad Sci USA 1996; 93 : 12456–60. [Google Scholar]
  25. Shiratsuchi A, Kawasaki Y, Ikemoto M, Arai H, Nakanishi Y. Role of class B scavenger receptor type I in phagocytosis of apoptotic rat spermatogenic cells by Sertoli cells. J Biol Chem 1999; 274 : 5901–8. [Google Scholar]
  26. Platt N, Suzuki H, Kodama T, Gordon S. Apoptotic thymocyte clearance in scavenger receptor class Adeficient mice is apparently normal. J Immunol 2000; 164 : 4861–7. [Google Scholar]
  27. Trigatti B, Rayburn H, Vinals M, et al. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci USA 1999; 96 : 9322–7. [Google Scholar]
  28. Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger re— ceptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 2000; 105 : 1049–56. [Google Scholar]
  29. Gregory CD. CD14-dependent clearance of apoptotic cells: relevance to the immune system. Curr Opin Immunol 2000; 12 : 27–34. [Google Scholar]
  30. Devitt A, Moffatt OD, Raykundalia C, Capra JD, Simmons DL, Gregory CD. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 1998; 329 : 505–9. [Google Scholar]
  31. Scott RS, McMahon EJ, Pop SM, et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 2001; 411 : 207–11. [Google Scholar]
  32. Botto M, Dell’Agnola C, Bygrave AE, et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 1998; 19 : 56–9. [Google Scholar]
  33. Korb LC, Ahearn JM. C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 1997; 158 : 4525–8. [Google Scholar]
  34. Ogden CA, de Cathelineau A, Hoffmann PR, et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 2001; 194 : 781–95. [Google Scholar]
  35. Ellis RE, Jacobson DM, Horvitz HR. Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans? Genetics 1991; 129 : 79–94. [Google Scholar]
  36. Reddien PW, Horvitz HR. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat Cell Biol 2000; 2 : 131–6. [Google Scholar]
  37. Wu Y, Horvitz HR. C. elegans phagocytosis and cellmigration protein CED-5 is similar to human DOCK180. Nature 1998; 329 : 501–4. [Google Scholar]
  38. Zhou Z, Caron E, Hartwieg E, Hall A, Horvitz HR. The C. elegans PH domain protein CED-12 regulates cytoskeletal reorganization via a Rho/Rac GTPase signaling pathway. Dev Cell 2001; 1 : 477–89. [Google Scholar]
  39. Wu Y, Tsai M, Cheng L, Chou C, Nei-Yin W. C. elegans CED-12 acts in the conserved CrkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment. Dev Cell 2001; 1 : 491–502. [Google Scholar]
  40. Gumienny TL, Brugnera E, Tosello-Trampont AC, et al. Ced-12/elmo, a novel member of the crkii/dock-180/rac pathway, is required for phagocytosis and cell migration. Cell 2001; 107 : 27–41. [Google Scholar]
  41. Albert M, Kim J, Birge RB. avb5 integrin recruits the CrkII-Dock180-Rac1 complex for phagocytosis of apoptotic cells. Nat Cell Biol 2000; 2 : 899–906. [Google Scholar]
  42. Zhou Z, Hartwieg E, Horvitz HR. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 2001; 104 : 43–56. [Google Scholar]
  43. Luciani MF, Chimini G. The ATP binding cassette transporter ABC1 is required for the engulfment of corpses generated by apoptoic cell death. EMBO J 1996; 15 : 226–35. [Google Scholar]
  44. Wu Y, Horvitz RH. The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell 1998; 93 : 951–60. [Google Scholar]
  45. Liu QA, Hengartner MO. Human CED-6 encodes a functional homologue of the Caenorhabditis elegans engulfment protein CED-6. Curr Biol 1999; 9 : 1347–50. [Google Scholar]
  46. Su H P, Brugnera E, Van Criekinge W, et al. Identification and characterization of a dimerization domain in CED-6, an adapter protein involved in engulfment of apoptotic cells. J Biol Chem 2000; 275 : 9542–9. [Google Scholar]
  47. Hamon Y, Broccardo C, Chambenoit O, et al. ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nat Cell Biol 2000; 2 : 399–406. [Google Scholar]
  48. Parnaik R, Raff MC, Scholes J. Differences between the clearance of apoptotic cells by professional and nonprofessional phagocytes. Curr Biol 2000; 10 : 857–60. [Google Scholar]
  49. Reddien PW, Cameron S, Horvitz HR. Phagocytosis promotes programmed cell death in C. elegans. Nature 1; 412 : 198–202. [Google Scholar]
  50. Hoeppner DJ, Hengartner MO, Schnabel R. Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 2001; 412 : 202–6. [Google Scholar]
  51. Diez-Roux G, Lang RA. Macrophages induce apoptosis in normal cells in vivo. Development 1997; 124 : 3633–8. [Google Scholar]
  52. Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature 2000; 407 : 784–8. [Google Scholar]
  53. Ren Y, Savill J. Apoptosis: the importance of being eaten. Cell Death Differ 1998; 5 : 563–8. [Google Scholar]
  54. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β PGE2 and PAF. J Clin Invest 1998; 101 : 890–8. [Google Scholar]
  55. Kurosaka K, Watanabe N, Kobayashi Y. Production of proinflammatory cytokines by resident tissue macrophages after phagocytosis of apoptotic cells. Cell Immunol 2001; 211 : 1–7. [Google Scholar]
  56. Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392 : 86–9. [Google Scholar]
  57. Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 2000; 191 : 411–6. [Google Scholar]
  58. Henson PM, Bratton DL, Fadok VA. The phosphatidylserine receptor: a crucial molecular switch? Nat Rev Mol Cell Biol 2001; 2 : 627–33. [Google Scholar]
  59. Fadok VA, Xue D, Henson P. If phosphatidylserine is the death knell, a new phosphatidylserine-specific receptor is the bellringer. Cell Death Differ 2001; 8 : 582–7. [Google Scholar]
  60. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2001; 2 : 947–50. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.