Free Access
Issue
Med Sci (Paris)
Volume 40, Novembre 2024
Les Cahiers de Myologie
Page(s) 26 - 29
Section Prix SFM
DOI https://doi.org/10.1051/medsci/2024131
Published online 18 November 2024
  1. Dahan-Oliel N, Cachecho S, Barnes D, et al. International multidisciplinary collaboration toward an annotated definition of arthrogryposis multiplex congenita. Am J Med Genet 2019 ; 181 (3) : 288–99. [CrossRef] [PubMed] [Google Scholar]
  2. Hoff JM, Loane M, Gilhus NE, et al. Arthrogryposis multiplexa congenita: an epidemiologic study of nearly 9 million births in 24 EUROCAT registers. Eur J Obstet Gynecol Reprod Biol 2011 ; 159 (2) : 347–50. [CrossRef] [PubMed] [Google Scholar]
  3. Le Tanno P, Latypova X, Rendu J, et al. Diagnostic workup in children with arthrogryposis: description of practices from a single reference center, comparison with literature and suggestion of recommendations. J Med Genet 2021 ; jmedgenet-2021-107823. [PubMed] [Google Scholar]
  4. Lowry RB, Sibbald B, Bedard T, et al. Prevalence of multiple congenital contractures including arthrogryposis multiplex congenita in Alberta, Canada, and a strategy for classification and coding. Birth Defects Res A Clin Mol Teratol 2010 ; 88 (12) : 1057–61. [CrossRef] [PubMed] [Google Scholar]
  5. Sells JM, Jaffe KM, Hall JG. Amyoplasia, the Most Common Type of Arthrogryposis: The Potential for Good Outcome. Pediatrics 1996 ; 97 (2) : 225–31. [CrossRef] [PubMed] [Google Scholar]
  6. Felsenthal N, Zelzer E. Mechanical regulation of musculoskeletal system development. Development 2017 ; 144 (23) : 4271–83. [CrossRef] [PubMed] [Google Scholar]
  7. Mercuri E, Talim B, Moghadaszadeh B, et al. Clinical and imaging findings in six cases of congenital muscular dystrophy with rigid spine syndrome linked to chromosome 1p (RSMD1). Neuromuscul Disord 2002 ; 12 (7-8) : 631–8. [CrossRef] [PubMed] [Google Scholar]
  8. Donohoe M, Pruszcynski B, Rogers K, et al. Predicting Ambulatory Function Based on Infantile Lower Extremity Posture Types in Amyoplasia Arthrogryposis. J Pediat Orthop 2019 ; 39 (7) : e5315. [CrossRef] [PubMed] [Google Scholar]
  9. Kroksmark AK, Kimber E, Jerre R, et al. Muscle involvement and motor function in amyoplasia. Am J Med Genet 2006 ; 140A (16) : 1757–67. [CrossRef] [Google Scholar]
  10. Gaeta M, Messina S, Mileto A, et al. Muscle fat-fraction and mapping in Duchenne muscular dystrophy: evaluation of disease distribution and correlation with clinical assessments: Preliminary experience. Skeletal Radiol 2012 ; 41 (8) : 955–61. [CrossRef] [PubMed] [Google Scholar]
  11. Kan HE, Scheenen TWJ, Wohlgemuth M, et al. Quantitative MR imaging of individual muscle involvement in facioscapulohumeral muscular dystrophy. Neuromuscul Disord 2009 ; 19 (5) : 357–62. [CrossRef] [PubMed] [Google Scholar]
  12. Schlaeger S, Sollmann N, Zoffl A, et al. Quantitative Muscle MRI in Patients with Neuromuscular Diseases—Association of Muscle Proton Density Fat Fraction with Semi-Quantitative Grading of Fatty Infiltration and Muscle Strength at the Thigh Region. Diagnostics 2021 ; 11 (6) : 1056. [CrossRef] [PubMed] [Google Scholar]
  13. Pollard AS, McGonnell IM, Pitsillides AA. Mechanoadaptation of developing limbs: shaking a leg. J Anat 2014 ; 224 (6) : 615–23. [CrossRef] [PubMed] [Google Scholar]
  14. Fatehi F, Salort-Campana E, Le Troter A, et al. Long-term follow-up of MRI changes in thigh muscles of patients with Facioscapulohumeral dystrophy: A quantitative study. PLoS ONE 2017 ; 12 (8) : e0183825. [CrossRef] [PubMed] [Google Scholar]
  15. Janssen BH, Voet NBM, Nabuurs CI, et al. Distinct Disease Phases in Muscles of Facioscapulohumeral Dystrophy Patients Identified by MR Detected Fat Infiltration. PLoS ONE 2014 ; 9 (1) : e85416. [CrossRef] [PubMed] [Google Scholar]
  16. Fatehi F, Salort-Campana E, Le Troter A, et al. Muscle MRI of facioscapulohumeral dystrophy (FSHD): A growing demand and a promising approach. Rev Neurol (Paris) 2016 ; 172 (10) : 566–71. [CrossRef] [PubMed] [Google Scholar]
  17. Janssen B, Voet N, Geurts A, et al. Quantitative MRI reveals decelerated fatty infiltration in muscles of active FSHD patients. Neurology 2016 ; 86 (18) : 1700–7. [CrossRef] [PubMed] [Google Scholar]
  18. Figueroa-Bonaparte S, Segovia S, Llauger J, et al. Muscle MRI Findings in Childhood/Adult Onset Pompe Disease Correlate with Muscle Function. PLoS ONE 2016 ; 11 (10) : e0163493. [CrossRef] [PubMed] [Google Scholar]
  19. Khan AA, Boggs T, Bowling M, et al. Whole-body magnetic resonance imaging in late-onset Pompe disease: Clinical utility and correlation with functional measures. J Inherit Metab Dis 2020 ; 43 (3) : 549–57. [CrossRef] [PubMed] [Google Scholar]
  20. Brogna C, Cristiano L, Tartaglione T, et al. Functional levels and MRI patterns of muscle involvement in upper limbs in Duchenne muscular dystrophy. PLoS ONE 2018 ; 13 (6) : e0199222. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.