Open Access
Issue
Med Sci (Paris)
Volume 40, Number 3, Mars 2024
Page(s) 231 - 234
Section Nouvelles
DOI https://doi.org/10.1051/medsci/2024008
Published online 22 March 2024
  1. Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH : trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018 ; 15 : 11–20. [CrossRef] [PubMed] [Google Scholar]
  2. Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018 ; 24 : 908–922. [CrossRef] [PubMed] [Google Scholar]
  3. Brunt EM, Kleiner DE. Challenges in the hepatic histopathology in non-alcoholic fatty liver disease. Gut 2017 ; 66 : 1539–1540. [CrossRef] [PubMed] [Google Scholar]
  4. Anstee QM, Reeves HL, Kotsiliti E, et al. From NASH to HCC : current concepts and future challenges. Nat Rev Gastroenterol Hepatol 2019 ; 16 : 411–428. [CrossRef] [PubMed] [Google Scholar]
  5. Donné R, Lujambio A. The liver cancer immune microenvironment : Therapeutic implications for hepatocellular carcinoma. Hepatology 2023; 77 : 1773–96. [CrossRef] [PubMed] [Google Scholar]
  6. Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol 2018 ; 68 : 280–295. [CrossRef] [PubMed] [Google Scholar]
  7. Park EJ, Lee JH, Yu G-Y, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 2010 ; 140 : 197–208. [CrossRef] [PubMed] [Google Scholar]
  8. Collin de l’Hortet A, Zerrad-Saadi A, Prip-Buus C, et al. GH administration rescues fatty liver regeneration impairment by restoring GH/EGFR pathway deficiency. Endocrinology 2014 ; 155 : 2545–2554. [CrossRef] [PubMed] [Google Scholar]
  9. Leclercq IA, Vansteenberghe M, Lebrun VB, et al. Defective hepatic regeneration after partial hepatectomy in leptin-deficient mice is not rescued by exogenous leptin. Lab Invest 2006 ; 86 : 1161–1171. [CrossRef] [PubMed] [Google Scholar]
  10. Aravinthan A, Scarpini C, Tachtatzis P, et al. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J Hepatol 2013 ; 58 : 549–556. [CrossRef] [PubMed] [Google Scholar]
  11. Nishida N, Yada N, Hagiwara S, et al. Unique features associated with hepatic oxidative DNA damage and DNA methylation in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2016 ; 31 : 1646–1653. [CrossRef] [PubMed] [Google Scholar]
  12. Tanaka S, Miyanishi K, Kobune M, et al. Increased hepatic oxidative DNA damage in patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. J Gastroenterol 2013 ; 48 : 1 249–258. [Google Scholar]
  13. Pinyol R, Torrecilla S, Wang H, et al. Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J Hepatol 2021; 75 : 865–878. [CrossRef] [PubMed] [Google Scholar]
  14. Gentric G, Maillet V, Paradis V, et al. Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease. J Clin Invest 2015 ; 125 : 981–992. [CrossRef] [PubMed] [Google Scholar]
  15. Donné R, Saroul-Aïnama M, Cordier P, et al. Polyploidy in liver development, homeostasis and disease. Nat Rev Gastroenterol Hepatol 2020; 17 : 391–405. [CrossRef] [PubMed] [Google Scholar]
  16. Boege Y, Malehmir M, Healy ME, et al. A Dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development. Cancer Cell 2017 ; 32 : 342–59.e10. [CrossRef] [PubMed] [Google Scholar]
  17. Verbeek J, Lannoo M, Pirinen E, et al. Roux-en-Y gastric bypass attenuates hepatic mitochondrial dysfunction in mice with non-alcoholic steatohepatitis. Gut 2015 ; 64 : 673–683. [CrossRef] [PubMed] [Google Scholar]
  18. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005 ; 41 : 1 313–321. [Google Scholar]
  19. Ragu S, Matos-Rodrigues G, Lopez BS. Replication stress, DNA damage, inflammatory cytokines and innate immune response. Genes (Basel) 2020; 11 : 409. [CrossRef] [PubMed] [Google Scholar]
  20. Donné R, Saroul-Ainama M, Cordier P, et al. Replication stress triggered by nucleotide pool imbalance drives DNA damage and cGAS-STING pathway activation in NAFLD. Dev Cell 2022 ; 57 : 1 728-41.e6. [CrossRef] [PubMed] [Google Scholar]
  21. Bacar H, Michallet MC. La voie cGAS-STING : une nouvelle arme « innée » contre le cancer. Med Sci (Paris) 2021 ; 37 : 677–80. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.