Open Access
Issue
Med Sci (Paris)
Volume 40, Number 1, Janvier 2024
La cavité orale et les dents au cœur de la santé
Page(s) 42 - 48
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023194
Published online 01 February 2024
  1. Curtis MA, Diaz PI, Van Dyke TE. The role of the microbiota in periodontal disease. Periodontol 2000 2020 ; 83 : 14–25. [CrossRef] [PubMed] [Google Scholar]
  2. Graves DT, Corrêa JD, Silva TA. The oral microbiota is modified by systemic diseases. J Dent Res 2019 ; 98 : 148–156. [CrossRef] [PubMed] [Google Scholar]
  3. How KY, Song KP, Chan KG. Porphyromonas gingivalis: An overview of periodontopathic pathogen below the gum line. Front Microbiol 2016 ; 7. [PubMed] [Google Scholar]
  4. Jia L, Han N, Du J, et al. Pathogenesis of important virulence factors of Porphyromonas gingivalis via Toll-like receptors. Front Cell Infect Microbiol 2019 ; 9 : 262. [CrossRef] [PubMed] [Google Scholar]
  5. Blasco-Baque V, Garidou L, Pomié C, et al. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut 2017 ; 66 : 872–885. [CrossRef] [PubMed] [Google Scholar]
  6. Cani PD, Amar J, Iglesias MAet al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007 ; 56 : 1761–1772. [CrossRef] [PubMed] [Google Scholar]
  7. Thomas C, Minty M, Vinel A, et al. Oral microbiota: A major player in the diagnosis of systemic diseases. Diagn Basel Switz 2021; 11 : 1376. [Google Scholar]
  8. Stanko P, Izakovicova Holla L. Bidirectional association between diabetes mellitus and inflammatory periodontal disease. A review. Biomed Pap 2014; 158 : 35–8. [Google Scholar]
  9. Bender P, Bürgin WB, Sculean Aet al. Serum antibody levels against Porphyromonas gingivalis in patients with and without rheumatoid arthritis: A systematic review and meta-analysis. Clin Oral Investig 2017 ; 21 : 33–42. [CrossRef] [PubMed] [Google Scholar]
  10. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol 2018 ; 16 : 745–759. [CrossRef] [PubMed] [Google Scholar]
  11. Syed SA, Loesche WJ. Bacteriology of human experimental gingivitis: effect of plaque age. Infect Immun 1978 ; 21 : 821–829. [CrossRef] [PubMed] [Google Scholar]
  12. Theilade E.. The non-specific theory in microbial etiology of inflammatory periodontal diseases. J Clin Periodontol 1986 ; 13 : 905–911. [CrossRef] [PubMed] [Google Scholar]
  13. Marsh PD. Are dental diseases examples of ecological catastrophes?. Microbiol Read Engl 2003 ; 149 : 279–294. [CrossRef] [PubMed] [Google Scholar]
  14. Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol 2012 ; 10 : 717–725. [CrossRef] [PubMed] [Google Scholar]
  15. Meuric V, Le Gall-David S, Boyer Eet al. Signature of microbial dysbiosis in periodontitis. Appl Environ Microbiol 2017 ; 83 : e00462–e00417. [Google Scholar]
  16. Chen T, Marsh PD, Al-Hebshi NN. SMDI: An index for measuring subgingival microbial dysbiosis. J Dent Res 2022; 101 : 331–8. [CrossRef] [PubMed] [Google Scholar]
  17. Brissot P, Ropert M, Le Lan Cet al. Non-transferrin bound iron: a key role in iron overload and iron toxicity. Biochim Biophys Acta 2012 ; 1820 : 403–410. [CrossRef] [PubMed] [Google Scholar]
  18. Moirand R, Guyader D, Brissot P, et al. Hémochromatose. EM-Consulte 2000. https://www.em-consulte.com. [Google Scholar]
  19. Feder JN, Gnirke A, Thomas Wet al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 1996 ; 13 : 399–408. [CrossRef] [PubMed] [Google Scholar]
  20. Roetto A, Totaro A, Piperno Aet al. New mutations inactivating transferrin receptor 2 in hemochromatosis type 3. Blood 2001 ; 97 : 2555–2560. [CrossRef] [PubMed] [Google Scholar]
  21. Powell LW, Seckington RC, Deugnier Y. Haemochromatosis. Lancet 2016 ; 388 : 706–716. [CrossRef] [PubMed] [Google Scholar]
  22. O’Neil J, Powell L. Clinical aspects of hemochromatosis. Semin Liver Dis. 2005 ; 25 : 381–391. [CrossRef] [PubMed] [Google Scholar]
  23. Weinberg ED. Role of iron in host-parasite interactions. J Infect Dis 1971 ; 124 : 401–410. [CrossRef] [PubMed] [Google Scholar]
  24. Bullen JJ. The significance of iron in infection. Rev Infect Dis 1981 ; 3 : 1127–1138. [CrossRef] [Google Scholar]
  25. Barton JC, Acton RT. Hemochromatosis and Vibrio vulnificus wound infections. J Clin Gastroenterol 2009 ; 43 : 890–893. [CrossRef] [PubMed] [Google Scholar]
  26. Quenee LE, Hermanas TM, Ciletti Net al. Hereditary hemochromatosis restores the virulence of plague vaccine strains. J Infect Dis 2012 ; 206 : 1050–1058. [CrossRef] [PubMed] [Google Scholar]
  27. Kim Y-J, Kim Y-K, Kho H-S. Effects of smoking on trace metal levels in saliva. Oral Dis 2010 ; 16 : 823–830. [CrossRef] [PubMed] [Google Scholar]
  28. Curtis MA, Sterne JA, Price SJet al. The protein composition of gingival crevicular fluid sampled from male adolescents with no destructive periodontitis: baseline data of a longitudinal study. J Periodontal Res 1990 ; 25 : 6–16. [CrossRef] [PubMed] [Google Scholar]
  29. Mukherjee S.. The role of crevicular fluid iron in periodontal disease. J Periodontol 1985 ; 56 : 22–27. [CrossRef] [Google Scholar]
  30. Inoshita E, Iwakura K, Amano Aet al. Effect of transferrin on the growth of Porphyromonas gingivalis. J Dent Res 1991 ; 70 : 1258–1261. [CrossRef] [PubMed] [Google Scholar]
  31. Shizukuishi S, Tazaki K, Inoshita Eet al. Effect of concentration of compounds containing iron on the growth of Porphyromonas gingivalis. FEMS Microbiol Lett 1995 ; 131 : 313–317. [CrossRef] [PubMed] [Google Scholar]
  32. Meuric V, Lainé F, Boyer Eet al. Periodontal status and serum biomarker levels in HFE hemochromatosis patients. A case series study. J Clin Periodontol 2017 ; 44 : 892–897. [CrossRef] [PubMed] [Google Scholar]
  33. Boyer E, Martin B, Gall-David SL, et al. Periodontal pathogens and clinical parameters in chronic periodontitis. Mol Oral Microbiol 2020; 35 : 19–28. [CrossRef] [PubMed] [Google Scholar]
  34. Boyer E, Gall-David SL, Martin Bet al. Increased transferrin saturation is associated with subgingival microbiota dysbiosis and severe periodontitis in genetic haemochromatosis. Sci Rep 2018 ; 8 : 15532. [CrossRef] [PubMed] [Google Scholar]
  35. Maurice J, Manousou P. Non-alcoholic fatty liver disease. Clin Med Lond Engl 2018 ; 18 : 245–250. [CrossRef] [PubMed] [Google Scholar]
  36. Team Review, LaBrecque DR, Abbas Zet al. World Gastroenterology Organisation global guidelines: Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J Clin Gastroenterol 2014 ; 48 : 467–473. [CrossRef] [PubMed] [Google Scholar]
  37. Sasaki N, Katagiri S, Komazaki Ret al. Endotoxemia by Porphyromonas gingivalis Injection aggravates non-alcoholic fatty liver disease, disrupts glucose/lipid metabolism, and alters gut microbiota in Mice. Front Microbiol 2018 ; 9 : 2470. [CrossRef] [PubMed] [Google Scholar]
  38. Pierantonelli I, Svegliati-Baroni G. Nonalcoholic fatty liver disease: basic pathogenetic mechanisms in the progression from NAFLD to NASH. Transplantation 2019 ; 103 : e1. [CrossRef] [PubMed] [Google Scholar]
  39. Brandl K, Schnabl B. Intestinal microbiota and nonalcoholic steatohepatitis. Curr Opin Gastroenterol 2017 ; 33 : 128–133. [CrossRef] [PubMed] [Google Scholar]
  40. Wang L, Mogami S, Karasawa Het al. Preventive effect of rikkunshito on gastric motor function inhibited by L-dopa in rats. Peptides 2014 ; 55 : 136–144. [CrossRef] [PubMed] [Google Scholar]
  41. Yoneda M, Naka S, Nakano Ket al. Involvement of a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease. BMC Gastroenterol 2012 ; 12 : 16. [CrossRef] [PubMed] [Google Scholar]
  42. Furusho H, Miyauchi M, Hyogo Het al. Dental infection of Porphyromonas gingivalis exacerbates high fat diet-induced steatohepatitis in mice. J Gastroenterol 2013 ; 48 : 1259–1270. [CrossRef] [PubMed] [Google Scholar]
  43. Hatasa M, Yoshida S, Takahashi H, et al. Relationship between NAFLD and periodontal disease from the view of clinical and basic research, and immunological response. Int J Mol Sci 2021; 22 : 3728. [CrossRef] [PubMed] [Google Scholar]
  44. Nagasaki A, Sakamoto S, Chea C, et al. Odontogenic infection by Porphyromonas gingivalis exacerbates fibrosis in NASH via hepatic stellate cell activation. Sci Rep 2020; 10 : 4134. [CrossRef] [PubMed] [Google Scholar]
  45. Tang Y, Bian Z, Zhao L, et al. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin Exp Immunol 2011 ; 166 : 281–290. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.