Open Access
Med Sci (Paris)
Volume 38, Number 12, Décembre 2022
Un monde de virus
Page(s) 990 - 998
Section M/S Revues
Published online 13 December 2022
  1. Raoult D, Forterre P. Redefining viruses: Lessons from Mimivirus. Nat Rev Microbiol 2008 ; 6 : 315–319. [CrossRef] [PubMed] [Google Scholar]
  2. Forterre, P. To Be or Not to Be Alive: How Recent Discoveries Challenge the Traditional Definitions of Viruses and Life, Stud Hist Philos Biol Biomed Sci 2016; pii : S1369–8486(16)30008–5. [PubMed] [Google Scholar]
  3. Nasir A, Romero-Severson E, Claverie JM. Investigating the Concept and Origin of Viruses. Trends Microbiol 2020; 28 : 959–67. [CrossRef] [PubMed] [Google Scholar]
  4. Koonin EV, Dolja VV, Krupovic M, et al. Viruses Defined by the Position of the Virosphere within the Replicator Space. Microbiol Mol Biol Rev 2021; 85(4) : e0019320. [CrossRef] [PubMed] [Google Scholar]
  5. Nasir A, Forterre P, Kim KM, et al. The distribution and impact of viral lineages in domains of life. Front Microbiol 2014 ; 5 : 194. [CrossRef] [PubMed] [Google Scholar]
  6. Koonin EV, Dolja VV, Krupovic M, et al. Global organization and proposed megataxonomy of the virus world. Microbiol Mol Biol Rev 2020; 84(2) : e00061–19. [PubMed] [Google Scholar]
  7. Woo AC, Gaia M, Guglielmini J, et al. Phylogeny of the Varidnaviria morphogenesis module: congruence and incongruence with the tree of life and viral taxonomy. Front Microbiol 2021; 12 : 704052. [CrossRef] [PubMed] [Google Scholar]
  8. Koonin EV, Dolja VV, Krupovic M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology 2015 ; 479–80 : 2–25. [CrossRef] [Google Scholar]
  9. Da Cunha V, Gaia M, Forterre P. The expending Asgard archaea and their elusive relationships with Eukarya. mLife 2022; 1 : 3–12. [CrossRef] [Google Scholar]
  10. Forterre P, Prangishvili D. The great billion-year war between ribosome – and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties. Ann N Y Acad Sci 2009 ; 1178 : 65–77. [CrossRef] [PubMed] [Google Scholar]
  11. Decroly E, Ferron F, Lescar J, et al. Conventional and unconventional mechanisms for capping viral mRNA. Nat Rev Microbiol 2012 ; 10 : 51–65. [CrossRef] [Google Scholar]
  12. Bell PJL. Evidence supporting a viral origin of the eukaryotic nucleus. Virus Res 2020; 289 : 198168. [CrossRef] [PubMed] [Google Scholar]
  13. Forterre P, Gaïa M. Giant viruses and the origin of modern eukaryotes. Curr Opin Microbiol 2016 ; 31 : 44–49. [PubMed] [Google Scholar]
  14. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000 ; 405 : 299–304. [CrossRef] [PubMed] [Google Scholar]
  15. Koonin EV. Taming of the shrewd: novel eukaryotic genes from RNA viruses. BMC Biol 2010 ; 8 : 2. [CrossRef] [PubMed] [Google Scholar]
  16. Arneth B. Leftovers of viruses in human physiology. Brain Struct Funct 2021; 226 : 1649–58. [CrossRef] [PubMed] [Google Scholar]
  17. Peltier C, Schmidlin L, Klein E, et al. Expression of the Beet necrotic yellow vein virus p25 protein induces hormonal changes and a root branching phenotype in Arabidopsis thaliana. Transgenic Res 2011 ; 20 : 443–466. [CrossRef] [PubMed] [Google Scholar]
  18. Valansi C, Moi D, Leikina E, et al. Arabidopsis HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens. J Cell Biol 2017 ; 216 : 571–581. [CrossRef] [PubMed] [Google Scholar]
  19. Barreat JCN, Katzourakis A. Paleovirology of the DNA viruses of eukaryotes. Trends in Microbiol 2022; 30 : 281–92. [CrossRef] [Google Scholar]
  20. Filée J. Multiple occurrences of mimivirus core genes acquired by eukaryotic genomes. Virology 2014 ; 466–7 : 53–59. [CrossRef] [Google Scholar]
  21. Moniruzzaman M, Weinheimer AR, Martinez-Gutierrez CA, et al., Widespread endogenization of giant viruses shapes genomes of green algae. Nature 2020; 588 : 141–5. [CrossRef] [PubMed] [Google Scholar]
  22. Irwin NAT, Pittis AA, Richard TA, et al. Systematic evaluation of horizontal gene transfer between eukaryotes and viruses. Nature microbiol 2022; 7 : 327–36. [Google Scholar]
  23. La Scola B, Audic S, Robert C, et al. A giant virus in amoebae. Science 2003 ; 299 : 2033. [Google Scholar]
  24. Takemura M. Poxviruses and the origin of the eukaryotic nucleus. J Mol Evol 2001 ; 52 : 419–425. [PubMed] [Google Scholar]
  25. Bell PJ. Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus?. J Mol Evol 2001 ; 53 : 251–256. [CrossRef] [PubMed] [Google Scholar]
  26. Takemura M. Medusavirus Ancestor in a Proto-Eukaryotic Cell: Updating the Hypothesis for the Viral Origin of the Nucleus. Front Microbiol 2020; 11 : 571831. [CrossRef] [PubMed] [Google Scholar]
  27. Forterre P, Gaia M. Giant viruses and the origin of eukaryotic RNA polymerases. Med Sci (Paris) 2021; 37 : 230–3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  28. Koonin EV, Yutin N. Evolution of the Large Nucleocytoplasmic DNA Viruses of Eukaryotes and Convergent Origins of Viral Gigantism. Adv Virus Res 2019 ; 103 : 167–202. [CrossRef] [PubMed] [Google Scholar]
  29. Guglielmini J, Woo AC, Krupovic M, et al. Diversification of giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes. Proc Natl Acad Sci USA 2019 ; 116 : 19585–19592. [Google Scholar]
  30. Liu Y, Bisio H, Toner CM, et al. Virus-encoded histone doublets are essential and form nucleosome-like structures. Cell 2021; 184 : 4237–50.e19. [CrossRef] [PubMed] [Google Scholar]
  31. Kijima S, Delmont TO, Miyazaki U, et al. Discovery of Viral Myosin Genes With Complex Evolutionary History Within Plankton. Front Microbiol 2021; 12 : 683294. [CrossRef] [PubMed] [Google Scholar]
  32. Da Cunha V, Gaia M, Ogata H, et al. Giant Viruses Encode Actin-Related Proteins. Mol Biol Evol 2022; 39(2) : msac022. [CrossRef] [PubMed] [Google Scholar]
  33. Khalifeh D, Neveu E, Fasshauer D. Megaviruses contain various genes encoding for eukaryotic vesicle trafficking factors. Traffic 2022; 23 : 414–25. [CrossRef] [PubMed] [Google Scholar]
  34. Villarreal LP, DeFilippis VR. A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. J Virol 2000 ; 74 : 7079–7084. [CrossRef] [PubMed] [Google Scholar]
  35. Forterre P. Why are there so many diverse replication machineries?. J Mol Biol 2013 ; 425 : 4714–4726. [CrossRef] [PubMed] [Google Scholar]
  36. Takemura M, Yokobori S, Ogata H. Evolution of Eukaryotic DNA Polymerases via Interaction Between Cells and Large DNA Viruses. J Mol Evol 2015 ; 81 : 24–33. [CrossRef] [PubMed] [Google Scholar]
  37. Kazlauskas D, Krupovic M, Guglielmini J, et al. Diversity and evolution of B-family DNA polymerases. Nucleic Acids Res 2020; 48 : 10142–56. [CrossRef] [PubMed] [Google Scholar]
  38. Guglielmini J, Gaia M, Da Cunha V, et al. Viral origin of eukaryotic type IIA DNA topoisomerases. Virus evolution 2022; sous presse. [PubMed] [Google Scholar]
  39. Mondal N, Parvin JD. DNA topoisomerase II alpha is required for RNA polymerase II transcription on chromatin templates. Nature 2001 ; 413 : 435–438. [CrossRef] [PubMed] [Google Scholar]
  40. Sperling AS, Jeong KS, Kitada T, et al. Topoisomerase II binds nucleosome-free DNA and acts redundantly with topoisomerase I to enhance recruitment of RNA Pol II in budding yeast. Proc Nat Acad Sci USA 2011 ; 108 : 12693–12698. [CrossRef] [PubMed] [Google Scholar]
  41. Netherton CL, Wileman T. Virus factories, double membrane vesicles and viroplasm generated in animal cells. Curr Opin Virol 2011 ; 1 : 381–387. [CrossRef] [PubMed] [Google Scholar]
  42. Chaikeeratisak V, Nguyen K, Khanna K, et al. Assembly of a nucleus-like structure during viral replication in bacteria. Science 2017 ; 355 : 194–197. [Google Scholar]
  43. Mendoza SD, Nieweglowska ES, Govindarajan S, et al. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature 2020; 577 : 244–8. [CrossRef] [PubMed] [Google Scholar]
  44. Wolff G, Limpens RWAL, Zevenhoven-Dobbe JC, et al. A molecular pore spans the double membrane of the coronavirus replication organelle Science 2020; 369 : 1395–8. [CrossRef] [PubMed] [Google Scholar]
  45. Sanderson M, Way M, Smith GL. Virus-induced cell motility. J Virol 1998 ; 72 : 1235–1243. [CrossRef] [PubMed] [Google Scholar]
  46. Buchrieser J, Dufloo J, Hubert M, et al. Syncytia formation by SARS-CoV-2-infected cells. EMBO J 2020; 39 : e106267. [CrossRef] [PubMed] [Google Scholar]
  47. Liu J, Cvirkaite-Krupovic V, Baquero DP, et al. Virus-induced cell gigantism and asymmetric cell division in archaea. Proc Natl Acad Sci USA 2021; 118 : e2022578118. [CrossRef] [PubMed] [Google Scholar]
  48. Forterre P. The virocell concept and environmental microbiology. ISME J 2013 ; 7 : 233–236. [CrossRef] [PubMed] [Google Scholar]
  49. Heisserer C, Selosse MA, Drezen JM. Des virus bénéfiques pour les plantes et les animaux. Med Sci (Paris) 2022; 38 : ???. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.