Open Access
Issue
Med Sci (Paris)
Volume 38, Number 12, Décembre 2022
Un monde de virus
Page(s) 1043 - 1051
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022169
Published online 13 December 2022
  1. Ackermann HW. 5500 Phages examined in the electron microscope. Arch Virol 2007 ; 152 : 227–243. [CrossRef] [PubMed] [Google Scholar]
  2. Bergh Ø. BØrsheim KY, Bratbak G, Heldal M. High abundance of viruses found in aquatic environments. Nature 1989 ; 340 : 467–468. [Google Scholar]
  3. Summers WC. Bacteriophage therapy. Annu Rev Microbiol 2001 ; 55 : 437–451. [CrossRef] [PubMed] [Google Scholar]
  4. Ferry T, Kolenda C, Gustave CAet al. Phage therapy in bone and joint infection : history, scientific basis, feasibility and perspectives in France. Virologie 2018 ; 24 : 4–11. [Google Scholar]
  5. Pirnay JP, Verbeken G, Ceyssens PJet al. The Magistral Phage. Viruses 2018 ; 10. [Google Scholar]
  6. Ferry T, Kolenda C, Briot T, et al. Implementation of a complex bone and joint infection phage therapy centre in France : Lessons to be learned after 4 years’ experience. Clin Microbiol Infect 2021; S1198-743X(21)00556-5. [PubMed] [Google Scholar]
  7. Chen Y, Batra H, Dong Jet al. Genetic Engineering of Bacteriophages against infectious diseases. Front Microbiol 2019 ; 10 : 954. [CrossRef] [PubMed] [Google Scholar]
  8. Fauconnier A.. Phage therapy regulation : from night to dawn. Viruses 2019 ; 11 : E352. [Google Scholar]
  9. Merabishvili M, Pirnay JP, Verbeken Get al. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PloS One 2009 ; 4 : e4944. [Google Scholar]
  10. World Medical Association World medical association declaration of Helsinki : ethical principles for medical research involving human subjects. JAMA 2013 ; 310 : 2191–2194. [CrossRef] [PubMed] [Google Scholar]
  11. Tamma PD, Aitken SL, Bonomo RA, et al. Infectious Diseases Society of America 2022 guidance on the treatment of extended-Spectrum β-lactamase producing enterobacterales (ESBL-E), carbapenem-resistant enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin Infect Dis 2022; ciac268. [Google Scholar]
  12. Lood C, Boeckaerts D, Stock M, et al. Digital phagograms : predicting phage infectivity through a multilayer machine learning approach. Curr Opin Virol 2022; 52 : 174–81. [CrossRef] [PubMed] [Google Scholar]
  13. Schooley RT, Biswas B, Gill JJet al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii Infection. Antimicrob Agents Chemother 2017 ; 61. [CrossRef] [PubMed] [Google Scholar]
  14. Djebara S, Maussen C, De Vos D, et al. Processing phage therapy requests in a Brussels military hospital : Lessons identified. Viruses 2019 17; 11(3) [Google Scholar]
  15. Jault P, Leclerc T, Jennes Set al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis 2019 ; 19 : 35–45. [Google Scholar]
  16. Law N, Logan C, Yung Get al. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection 2019 ; 47 : 665–668. [CrossRef] [PubMed] [Google Scholar]
  17. Chen P, Liu Z, Tan X, et al. Bacteriophage therapy for empyema caused by carbapenem-resistant Pseudomonas aeruginosa. Biosci Trends 2022; 16 : 158–62. [CrossRef] [PubMed] [Google Scholar]
  18. Dedrick RM, Guerrero-Bustamante CA, Garlena RAet al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 2019 ; 25 : 730–733. [Google Scholar]
  19. Ferry T, Kolenda C, Briot T, et al. Past and future of phage therapy and phage-derived proteins in patients with bone and joint infection. Viruses 2021; 13 : 2414. [Google Scholar]
  20. Ferry T, Kolenda C, Batailler C, et al. Phage therapy as adjuvant to conservative surgery and antibiotics to salvage patients with relapsing S. aureus prosthetic knee infection. Front Med 2020; 7 : 570572. [CrossRef] [Google Scholar]
  21. Kolenda C, Josse J, Medina M, et al. Evaluation of the activity of a combination of three bacteriophages alone or in association with antibiotics on Staphylococcus aureus embedded in biofilm or internalized in osteoblasts. Antimicrob Agents Chemother 2020 21; 64. [Google Scholar]
  22. Ferry T, Seng P, Mainard Det al. The CRIOAc healthcare network in France : A nationwide Health Ministry program to improve the management of bone and joint infection. Orthop Traumatol Surg Res 2019 ; 105 : 185–190. [Google Scholar]
  23. Ferry T, Kolenda C, Batailler C, et al. Case report : Arthroscopic “Debridement Antibiotics and Implant Retention” with local injection of personalized phage therapy to salvage a relapsing Pseudomonas aeruginosa prosthetic knee infection. Front Med 2021; 8 : 569159. [CrossRef] [Google Scholar]
  24. Leitner L, Ujmajuridze A, Chanishvili N, et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate : a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect Dis 2021; 21 : 427–36. [Google Scholar]
  25. Javaudin F, Latour C, Debarbieux L, Lamy-Besnier Q. Intestinal bacteriophage therapy : Looking for optimal efficacy. Clin Microbiol Rev 2021; 34 : e0013621. [CrossRef] [PubMed] [Google Scholar]
  26. Marcuk LM, Nikiforov VN, Scerbak JFet al. Clinical studies of the use of bacteriophage in the treatment of cholera. Bull World Health Organ 1971 ; 45 : 77–83. [PubMed] [Google Scholar]
  27. Sarker SA, Sultana S, Reuteler Get al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations : A randomized trial in children From Bangladesh. EBioMedicine 2016 ; 4 : 124–137. [CrossRef] [PubMed] [Google Scholar]
  28. Corbellino M, Kieffer N, Kutateladze M, et al. Eradication of a multidrug-Resistant, carbapenemase-producing Klebsiella pneumoniae isolate following oral and intra-rectal therapy with a custom made, lytic bacteriophage preparation. Clin Infect Dis 2020; 70 : 1998–2001. [CrossRef] [PubMed] [Google Scholar]
  29. Riedel T, Wittmann J, Bunk Bet al. A Clostridioides difficile bacteriophage genome encodes functional binary toxin-associated genes. J Biotechnol 2017 ; 250 : 23–28. [CrossRef] [PubMed] [Google Scholar]
  30. Nale JY, Spencer J, Hargreaves KRet al. Bacteriophage combinations significantly reduce Clostridium difficile growth in vitro and proliferation in vivo. Antimicrob Agents Chemother 2016 ; 60 : 968–981. [CrossRef] [PubMed] [Google Scholar]
  31. Selle K, Fletcher JR, Tuson H, et al. in vivo targeting of Clostridioides difficile using phage-delivered CRISPR-Cas3 antimicrobials. mBio 2020; 11 : e00019–20. [Google Scholar]
  32. Park H, Laffin MR, Jovel Jet al. The success of fecal microbial transplantation in Clostridium difficile infection correlates with bacteriophage relative abundance in the donor : a retrospective cohort study. Gut Microbes 2019 ; 10 : 676–687. [CrossRef] [PubMed] [Google Scholar]
  33. Zuo T, Wong SH, Lam Ket al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 2018 ; 67 : 634–643. [PubMed] [Google Scholar]
  34. Ott SJ, Waetzig GH, Rehman Aet al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 2017 ; 152 : 799–811 e7. [Google Scholar]
  35. Norman JM, Handley SA, Baldridge MTet al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 2015 ; 160 : 447–460. [CrossRef] [PubMed] [Google Scholar]
  36. Clooney AG, Sutton TDS, Shkoporov ANet al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 2019 ; 26 : 764–78.e5. [CrossRef] [PubMed] [Google Scholar]
  37. Tarris G, de Rougemont A, Charkaoui M, et al. Enteric Viruses and inflammatory bowel disease. Viruses 2021; 13 : 104. [Google Scholar]
  38. Ferry T, Kolenda C, Gustave CA, et al. Phagothérapie pour les patients présentant une infection ostéoarticulaire : historique, fondements, faisabilité et perspectives en France. Virologie (Montrouge) 2020; 24 : 49–56. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.