Open Access
Med Sci (Paris)
Volume 38, Number 1, Janvier 2022
Page(s) 52 - 58
Section M/S Revues
Published online 21 January 2022
  1. Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019 ; 157. [Google Scholar]
  2. Lablanche S, Borot S, Wojtusciszyn A, et al. Ten-years outcomes of islet transplantation in patients with type 1 diabetes: data from the Swiss-French GRAGIL network. Am J Transplant 2021; 21 : 3725–33. [CrossRef] [PubMed] [Google Scholar]
  3. Buchwald P, Bernal A, Echeverri F, et al. Fully automated islet cell counter (ICC) for the assessment of islet mass, purity, and size distribution by digital image analysis. Cell Transplant 2016 ; 25 : 1747–1761. [CrossRef] [PubMed] [Google Scholar]
  4. Ribeiro D, Kvist AJ, Wittung-Stafshede P, et al. 3D-models of insulin-producing β-cells: from primary islet cells to stem cell-derived islets. Stem Cell Rev Reports 2018 ; 14 : 177–188. [CrossRef] [Google Scholar]
  5. Shapiro AMJ, Pokrywczynska M, Ricordi C. Clinical pancreatic islet transplantation. Nat Rev Endocrinol 2017 ; 13 : 268–277. [CrossRef] [PubMed] [Google Scholar]
  6. D’Amour KAD, Bang AG, Eliazer S, et al. Production of pancreatic hormone – expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006 ; 24 : 1392–1401. [CrossRef] [PubMed] [Google Scholar]
  7. Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008 ; 26 : 443–452. [CrossRef] [PubMed] [Google Scholar]
  8. Pagliuca FW, Millman JR, Gürtler M, et al. Generation of functional human pancreatic β cells in vitro. Cell 2014 ; 159 : 428–439. [CrossRef] [PubMed] [Google Scholar]
  9. Rezania A, Bruin JE, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 2014 ; 32 : 1121–1133. [CrossRef] [PubMed] [Google Scholar]
  10. Hassiotou F, Beltran A, Chetwynd E, et al. Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells 2012 ; 30 : 2164–2174. [CrossRef] [PubMed] [Google Scholar]
  11. Sapir T, Shternhall K, Meivar-Levy I, et al. Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells. Proc Natl Acad Sci USA 2005 ; 102 : 7964–7969. [CrossRef] [PubMed] [Google Scholar]
  12. Wassmer C, Lebreton F, Bellofatto K, et al. Generation of insulin-secreting organoids: a step toward engineering and transplanting the bioartificial pancreas. Transpl Int 2020; 33 : 1577–88. [CrossRef] [PubMed] [Google Scholar]
  13. Lysy PA. La thérapie cellulaire du diabète. Med Sci (Paris) 2016 ; 32 : 401–407. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  14. Duvillié B.. Quelles cellules souches pour une réparation du pancréas endocrine ?. Med Sci (Paris) 2013 ; 29 : 744–748. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  15. Bader E, Migliorini A, Gegg M, et al. Identification of proliferative and mature β-cells in the islets of Langerhans. Nature 2016 ; 535 : 430–434. [CrossRef] [PubMed] [Google Scholar]
  16. Weitz J, Menegaz D, Caicedo A. Deciphering the complex communication networks that orchestrate pancreatic islet function. Diabetes 2021; 70 : 17–26. [CrossRef] [PubMed] [Google Scholar]
  17. Lehmann R, Zuellig RA, Kugelmeier P, et al. Superiority of small islets in human islet transplantation. Diabetes 2007 ; 56 : 594–603. [CrossRef] [PubMed] [Google Scholar]
  18. Yu Y, Gamble A, Pawlick R, et al. Bioengineered human pseudoislets form efficiently from donated tissue, compare favourably with native islets in vitro and restore normoglycaemia in mice. Diabetologia 2018 ; 61 : 2016–2029. [CrossRef] [PubMed] [Google Scholar]
  19. Hilderink J, Spijker S, Carlotti F, et al. Controlled aggregation of primary human pancreatic islet cells leads to glucose-responsive pseudoislets comparable to native islets. J Cell Mol Med 2015 ; 19 : 1836–1846. [CrossRef] [PubMed] [Google Scholar]
  20. Jeon J, Correa-Medina M, Ricordi C, et al. Endocrine cell clustering during human pancreas development. J Histochem Cytochem 2009 ; 57 : 811–824. [CrossRef] [PubMed] [Google Scholar]
  21. Nair GG, Liu JS, Russ HA, et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat Cell Biol 2019 ; 21 : 263–274. [CrossRef] [PubMed] [Google Scholar]
  22. Velazco-Cruz L, Song J, Maxwell KG, et al. Acquisition of dynamic function in human stem cell-derived β cells. Stem Cell Reports 2019 ; 12 : 351–365. [CrossRef] [PubMed] [Google Scholar]
  23. Youngblood RL, Sampson JP, Lebioda KR, et al. Microporous scaffolds support assembly and differentiation of pancreatic progenitors into β-cell clusters. Acta Biomater 2019 ; 96 : 111–122. [CrossRef] [PubMed] [Google Scholar]
  24. Zuellig RA, Cavallari G, Gerber P, et al. Improved physiological properties of gravity-enforced reassembled rat and human pancreatic pseudo-islets. J. Tissue Eng Regen Med 2017 ; 11 : 109–120. [CrossRef] [Google Scholar]
  25. Gao B, Jing C, Ng K, et al. Fabrication of three-dimensional islet models by the geometry-controlled hanging-drop method. Acta Mech Sin 2019 ; 35 : 329–337. [CrossRef] [Google Scholar]
  26. Kim Y, Kim H, Ko UH, et al. Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo. Sci Rep 2016 ; 6 : 1–13. [CrossRef] [PubMed] [Google Scholar]
  27. Lebreton F, Lavallard V, Bellofatto K, et al. Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes. Nat Commun 2019 ; 10 : 4491. [CrossRef] [PubMed] [Google Scholar]
  28. Candiello J, Grandhi TSP, Goh SK, et al. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform. Biomaterials 2018 ; 177 : 27–39. [CrossRef] [PubMed] [Google Scholar]
  29. Jun Y, Lee J, Choi S, et al. In vivo-mimicking microfluidic perfusion culture of pancreatic islet spheroids. Sci Adv 2019 ; 5 : 1–13. [Google Scholar]
  30. Tao T, Wang Y, Chen W, et al. Engineering human islet organoids from iPSCs using an organ-on-chip platform. Lab Chip 2019 ; 19 : 948–958. [CrossRef] [PubMed] [Google Scholar]
  31. Lebreton F, Wassmer C-H, Belofatto K, et al. Organoïdes sécréteurs d’insuline. Med Sci (Paris) 2020; 36 : 879–85. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Hubber EL, Rackham CL, Jones PM. Protecting islet functional viability using mesenchymal stromal cells. Stem Cells Transl Med 2021; 10 : 674–80. [CrossRef] [PubMed] [Google Scholar]
  33. Jun Y, Kang AR, Lee JS, et al. Microchip-based engineering of super-pancreatic islets supported by adipose-derived stem cells. Biomaterials 2014 ; 35 : 4815–4826. [CrossRef] [PubMed] [Google Scholar]
  34. Li XY, Wu SY, Leung PS. Human fetal bone marrow-derived mesenchymal stem cells promote the proliferation and differentiation of pancreatic progenitor cells and the engraftment function of islet-like cell clusters. Int J Mol Sci 2019 ; 20 : 4083. [CrossRef] [Google Scholar]
  35. Salg GA, Giese NA, Schenk M, et al. The emerging field of pancreatic tissue engineering: A systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. J Tissue Eng 2019 ; 10 : 204173141988470. [CrossRef] [Google Scholar]
  36. Kim J, Shim IK, Hwang DG, et al. 3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions. J Mater Chem B 2019 ; 7 : 1773–1781. [CrossRef] [PubMed] [Google Scholar]
  37. Jiang K, Chaimov D, Patel SN, et al. 3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture. Biomaterials 2019 ; 198 : 37–48. [CrossRef] [PubMed] [Google Scholar]
  38. Bi H, Karanth SS, Ye K, et al. Decellularized tissue matrix enhances self-assembly of islet organoids from pluripotent stem cell differentiation. ACS Biomater Sci Eng 2020; 6 : 4155–65. [CrossRef] [PubMed] [Google Scholar]
  39. Chaimov D, Baruch L, Krishtul S, et al. Innovative encapsulation platform based on pancreatic extracellular matrix achieve substantial insulin delivery. J Control Release 2017 ; 257 : 91–101. [CrossRef] [PubMed] [Google Scholar]
  40. Sackett SD, Tremmel DM, Ma F, et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci Rep 2018 ; 8 : 10452. [CrossRef] [PubMed] [Google Scholar]
  41. Tamburrini R, Chaimov D, Asthana A, et al. Detergent-free decellularization of the human pancreas for soluble extracellular matrix (ECM) Production. J Vis Exp 2020; 2020 : 1–15. [Google Scholar]
  42. Bi H, Ye K, Jin S. Proteomic analysis of decellularized pancreatic matrix identifies collagen V as a critical regulator for islet organogenesis from human pluripotent stem cells. Biomaterials 2020; 233 : 119673. [CrossRef] [PubMed] [Google Scholar]
  43. Hogan MF, Hull RL. The islet endothelial cell: a novel contributor to beta cell secretory dysfunction in diabetes. Diabetologia 2017 ; 60 : 952–959. [CrossRef] [PubMed] [Google Scholar]
  44. Pepper AR, Gala-Lopez B, Ziff O, et al. Revascularization of transplanted pancreatic islets and role of the transplantation site. Clin Dev Immunol 2013 ; 2013 : 1–13. [CrossRef] [Google Scholar]
  45. Augsornworawat P, Velazco-Cruz L, Song J, et al. A hydrogel platform for in vitro three dimensional assembly of human stem cell-derived islet cells and endothelial cells. Acta Biomater 2019 ; 97 : 272–280. [CrossRef] [PubMed] [Google Scholar]
  46. Takahashi Y, Sekine K, Kin T, et al. Self-condensation culture enables vascularization of tissue fragments for efficient therapeutic transplantation. Cell Rep 2018 ; 23 : 1620–1629. [CrossRef] [PubMed] [Google Scholar]
  47. Rambøl MH, Han E, Niklason LE. Microvessel network formation and interactions with pancreatic islets in three-dimensional chip cultures. Tissue Eng Part A 2020; 26 : 556–68. [CrossRef] [PubMed] [Google Scholar]
  48. Hospodiuk M, Dey M, Ayan B, et al. Sprouting angiogenesis in engineered pseudo islets. Biofabrication 2018 ; 10 : 035003. [CrossRef] [PubMed] [Google Scholar]
  49. Wimmer RA, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 2019 ; 565 : 505–510. [CrossRef] [PubMed] [Google Scholar]
  50. Patel SN, Ishahak M, Chaimov D, et al. Organoid microphysiological system preserves pancreatic islet function within 3D matrix. Sci Adv 2021; 7 : eaba5515. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.