Open Access
Med Sci (Paris)
Volume 37, Number 12, Décembre 2021
Vésicules extracellulaires
Page(s) 1158 - 1165
Section Vésicules extracellulaires
Published online 20 December 2021
  1. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018 ; 7 : 1535750. [CrossRef] [PubMed] [Google Scholar]
  2. Kim D-K, Lee J, Simpson RJ, et al. EVpedia: A community web resource for prokaryotic and eukaryotic extracellular vesicles research. Semin Cell Dev Biol 2015 ; 40 : 4–7. [CrossRef] [PubMed] [Google Scholar]
  3. Pang B, Zhu Y, Ni J, et al. Extracellular vesicles: the next generation of biomarkers for liquid biopsy-based prostate cancer diagnosis. Theranostics 2020; 10 : 2309–26. [CrossRef] [PubMed] [Google Scholar]
  4. Angelot F, Seillès E, Saas P, et al. Les microparticules endothéliales — Un signal d’alarme pour le système immunitaire ? Med Sci (Paris) 2010 ; 26 : 31–33. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Saint-Pol J, Gosselet F. Petits mais costauds — Les exosomes neuronaux contrôlent l’intégrité vasculaire cérébrale. Med Sci (Paris) 2018 ; 34 : 303–306. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Strimbu K, Tavel JA. What are Biomarkers? Curr Opin HIV AIDS 2010 ; 5 : 463–466. [CrossRef] [PubMed] [Google Scholar]
  7. Welsh JA, Holloway JA, Wilkinson JS, et al. Extracellular Vesicle Flow Cytometry Analysis and Standardization. Front Cell Dev Biol 2017 ; 5 : 78. [CrossRef] [PubMed] [Google Scholar]
  8. Boulanger CM, Dignat-George F. Microparticles: an introduction. Arterioscler Thromb Vasc Biol 2011 ; 31 : 2–3. [CrossRef] [PubMed] [Google Scholar]
  9. Nozaki T, Sugiyama S, Koga H, et al. Significance of a multiple biomarkers strategy including endothelial dysfunction to improve risk stratification for cardiovascular events in patients at high risk for coronary heart disease. J Am Coll Cardiol 2009 ; 54 : 601–608. [Google Scholar]
  10. Amabile N, Guérin AP, Tedgui A, et al. Predictive value of circulating endothelial microparticles for cardiovascular mortality in end-stage renal failure: a pilot study. Nephrol Dial Transplant 2012 ; 27 : 1873–1880. [CrossRef] [PubMed] [Google Scholar]
  11. Suades R, Padró T, Crespo J, et al. Liquid Biopsy of Extracellular Microvesicles Predicts Future Major Ischemic Events in Genetically Characterized Familial Hypercholesterolemia Patients. Arterioscler Thromb Vasc Biol 2019 ; 39 : 1172–1181. [CrossRef] [PubMed] [Google Scholar]
  12. Sarlon-Bartoli G, Bennis Y, Lacroix R, et al. Plasmatic level of leukocyte-derived microparticles is associated with unstable plaque in asymptomatic patients with high-grade carotid stenosis. J Am Coll Cardiol 2013 ; 62 : 1436–1441. [CrossRef] [PubMed] [Google Scholar]
  13. Lane RE, Korbie D, Hill MM, et al. Extracellular vesicles as circulating cancer biomarkers: opportunities and challenges. Clin Transl Med 2018 ; 7 : 14. [PubMed] [Google Scholar]
  14. Zhou E, Li Y, Wu F, et al. Circulating extracellular vesicles are effective biomarkers for predicting response to cancer therapy. EBioMedicine 2021; 67 : 103365. [CrossRef] [PubMed] [Google Scholar]
  15. Wang H, Jiang D, Li W, et al. Evaluation of serum extracellular vesicles as noninvasive diagnostic markers of glioma. Theranostics 2019 ; 9 : 5347–5358. [CrossRef] [PubMed] [Google Scholar]
  16. Roca E, Lacroix R, Judicone C, et al. Detection of EpCAM-positive microparticles in pleural fluid: A new approach to mini-invasively identify patients with malignant pleural effusions. Oncotarget 2016 ; 7 : 3357–3366. [CrossRef] [PubMed] [Google Scholar]
  17. Wolf P.. The nature and significance of platelet products in human plasma. Br J Haematol 1967 ; 13 : 269–288. [Google Scholar]
  18. Lacroix R, Vallier L, Bonifay A, et al. Microvesicles and Cancer Associated Thrombosis. Semin Thromb Hemost 2019 ; 45 : 593–603. [CrossRef] [PubMed] [Google Scholar]
  19. Hisada Y, Mackman N. Measurement of tissue factor activity in extracellular vesicles from human plasma samples. Res Pract Thromb Haemost 2019 ; 3 : 44–48. [CrossRef] [PubMed] [Google Scholar]
  20. Vallier L, Bouriche T, Bonifay A, et al. Increasing the sensitivity of the human microvesicle tissue factor activity assay. Thromb Res 2019 ; 182 : 64–74. [CrossRef] [PubMed] [Google Scholar]
  21. Franco C, Lacroix R, Vallier L, et al. A new hybrid immunocapture bioassay with improved reproducibility to measure tissue factor-dependent procoagulant activity of microvesicles from body fluids. Thromb Res 2020; 196 : 414–24. [CrossRef] [PubMed] [Google Scholar]
  22. van Es N, Hisada Y, Di Nisio M, et al. Extracellular vesicles exposing tissue factor for the prediction of venous thromboembolism in patients with cancer: A prospective cohort study. Thromb Res 2018 ; 166 : 54–59. [CrossRef] [PubMed] [Google Scholar]
  23. Guervilly C, Bonifay A, Burtey S, et al. Dissemination of extreme levels of extracellular vesicles: tissue factor activity in patients with severe COVID-19. Blood Adv 2021; 5 : 628–34. [CrossRef] [PubMed] [Google Scholar]
  24. Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol 2016 ; 36 : 301–312. [CrossRef] [PubMed] [Google Scholar]
  25. Manier S, Leleu X, Avet-Loiseau H. Rôle pronostique des microARN des exosomes circulants dans le myélome multiple. Med Sci (Paris) 2017 ; 33 : 939–941. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  26. Laurent LC, Abdel-Mageed AB, Adelson PD, et al. Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium. J Extracell Vesicles 2015 ; 4 : 26533. [CrossRef] [PubMed] [Google Scholar]
  27. Hill AF, Pegtel DM, Lambertz U, et al. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics. J Extracell Vesicles 2013; 2. [PubMed] [Google Scholar]
  28. [Google Scholar]
  29. Srinivasan S, Yeri A, Cheah PS, et al. Small RNA Sequencing across Diverse Biofluids Identifies Optimal Methods for exRNA Isolation. Cell 2019 ; 177 : 446–62.e16. [CrossRef] [PubMed] [Google Scholar]
  30. Hill AF, Pegtel DM, Lambertz U, et al. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics. J Extracell Vesicles 2013; 2. [PubMed] [Google Scholar]
  31. Kappel A, Keller A. miRNA assays in the clinical laboratory: workflow, detection technologies and automation aspects. Clin Chem Lab Med 2017 ; 55 : 636–647. [CrossRef] [PubMed] [Google Scholar]
  32. Zarà M, Amadio P, Campodonico J, et al. Exosomes in Cardiovascular Diseases. Diagnostics (Basel) 2020; 10 : E943. [CrossRef] [Google Scholar]
  33. Happel C, Ganguly A, Tagle DA. Extracellular RNAs as potential biomarkers for cancer. J Cancer Metastasis Treat 2020; 6 : 32. [PubMed] [Google Scholar]
  34. Zhou R, Wang L, Zhao G, et al. Circulating exosomal microRNAs as emerging non-invasive clinical biomarkers in heart failure: Mega bio-roles of a nano bio-particle. IUBMB Life 2020; 72 : 2546–62. [CrossRef] [PubMed] [Google Scholar]
  35. Bei Y, Yu P, Cretoiu D, et al. Exosomes-Based Biomarkers for the Prognosis of Cardiovascular Diseases. Adv Exp Med Biol 2017 ; 998 : 71–88. [CrossRef] [PubMed] [Google Scholar]
  36. Bi S, C W, Y J, et al. Correlation between serum exosome derived miR-208a and acute coronary syndrome. Int J Clin Exp Med 2015; 8. [Google Scholar]
  37. Yang Y, Cai Y, Wu G, et al. Plasma long non-coding RNA, CoroMarker, a novel biomarker for diagnosis of coronary artery disease. Clin Sci (Lond) 2015 ; 129 : 675–685. [CrossRef] [PubMed] [Google Scholar]
  38. Margolis E, Brown G, Partin A, et al. Predicting high-grade prostate cancer at initial biopsy: clinical performance of the ExoDx (EPI) Prostate Intelliscore test in three independent prospective studies. Prostate Cancer Prostatic Dis 2021. [PubMed] [Google Scholar]
  39. Singh A, Singh AK, Giri R, et al. The role of microRNA-21 in the onset and progression of cancer. Future Med Chem 2021; 13 : 1885–906. [CrossRef] [PubMed] [Google Scholar]
  40. Dejima H, Iinuma H, Kanaoka R, et al. Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol Lett 2017 ; 13 : 1256–1263. [CrossRef] [PubMed] [Google Scholar]
  41. Lacroix R, Judicone C, Poncelet P, et al. Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J Thromb Haemost 2012 ; 10 : 437–446. [CrossRef] [PubMed] [Google Scholar]
  42. Coumans FAW, Brisson AR, Buzas EI, et al. Methodological Guidelines to Study Extracellular Vesicles. Circ Res 2017 ; 120 : 1632–1648. [CrossRef] [PubMed] [Google Scholar]
  43. Brennan K, Martin K, FitzGerald SP, et al. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci Rep 2020; 10 : 1039. [CrossRef] [PubMed] [Google Scholar]
  44. Cointe S, Judicone C, Robert S, et al. Standardization of microparticle enumeration across different flow cytometry platforms: results of a multicenter collaborative workshop. J. Thromb. Haemost 2017 ; 15 : 187–193. [CrossRef] [Google Scholar]
  45. Coumans FAW, Brisson AR, Buzas EI, et al. Methodological Guidelines to Study Extracellular Vesicles. Circ Res 2017 ; 120 : 1632–1648. [CrossRef] [PubMed] [Google Scholar]
  46. Marcoux G, Laroche A, Hasse S, et al. Platelet EVs contain an active proteasome involved in protein processingfor antigen presentation via MHC-I molecules. Blood 2021 Jul 22. blood.2020009957. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.