Open Access
Issue
Med Sci (Paris)
Volume 37, Number 12, Décembre 2021
Vésicules extracellulaires
Page(s) 1119 - 1124
Section Vésicules extracellulaires
DOI https://doi.org/10.1051/medsci/2021204
Published online 20 December 2021
  1. Soehnlein O, Libby P. Targeting inflammation in atherosclerosis — from experimental insights to the clinic. Nat Rev Drug Discov 2021; 20 : 589–610. [CrossRef] [PubMed] [Google Scholar]
  2. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018 ; 19 : 213–228. [CrossRef] [PubMed] [Google Scholar]
  3. Yáñez-Mó M, Siljander PRM, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015 ; 4 : 1–60. [Google Scholar]
  4. Boulanger CM, Loyer X, Rautou P-E, et al. Extracellular vesicles in coronary artery disease. Nat Rev Cardiol 2017 ; 14 : 259–272. [Google Scholar]
  5. Boulanger CM, Scoazec A, Ebrahimian T, et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation 2001 ; 104 : 2649–2652. [CrossRef] [PubMed] [Google Scholar]
  6. Sarlon-Bartoli G, Bennis Y, Lacroix R, et al. Plasmatic level of leukocyte-derived microparticles is associated with unstable plaque in asymptomatic patients with high-grade carotid stenosis. J Am Coll Cardiol 2013 ; 62 : 1436–1441. [CrossRef] [PubMed] [Google Scholar]
  7. Sinning JM, Losch J, Walenta K, et al. Circulating CD31 +/Annexin V + microparticles correlate with cardiovascular outcomes. Eur Heart J 2011 ; 32 : 2034–2041. [CrossRef] [PubMed] [Google Scholar]
  8. Nozaki T, Sugiyama S, Koga H, et al. Significance of a Multiple Biomarkers Strategy Including Endothelial Dysfunction to Improve Risk Stratification for Cardiovascular Events in Patients at High Risk for Coronary Heart Disease. J Am Coll Cardiol 2009 ; 54 : 601–608. [CrossRef] [PubMed] [Google Scholar]
  9. Loyer X, Potteaux S, Vion A, et al. Inhibition of MicroRNA-92a Prevents Endothelial Dysfunction and Atherosclerosis in Mice. Circ Res 2014 ; 114 : 434–443. [CrossRef] [PubMed] [Google Scholar]
  10. Zu L, Ren C, Pan B, et al. Endothelial microparticles after antihypertensive and lipid-lowering therapy inhibit the adhesion of monocytes to endothelial cells. Int J Cardiol 2016 ; 202 : 756–759. [CrossRef] [PubMed] [Google Scholar]
  11. Zakharova L, Svetlova M, Fomina AF. T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. J Cell Physiol 2007 ; 212 : 174–181. [CrossRef] [PubMed] [Google Scholar]
  12. Pakala R.. Serotonin and thromboxane A2 stimulate platelet-derived microparticle-induced smooth muscle cell proliferation. Cardiovasc Radiat Med 2004 ; 5 : 20–26. [CrossRef] [PubMed] [Google Scholar]
  13. Sarkar A, Mitra S, Mehta S, et al. Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1. PLoS One 2009 ; 4 [Google Scholar]
  14. Leroyer AS, Isobe H, Lesèche G, et al. Cellular Origins and Thrombogenic Activity of Microparticles Isolated From Human Atherosclerotic Plaques. J Am Coll Cardiol 2007 ; 49 : 772–777. [CrossRef] [PubMed] [Google Scholar]
  15. Mayr M, Grainger D, Mayr U, et al. Proteomics, metabolomics, and immunomics on microparticles derived from human atherosclerotic plaques. Circ Cardiovasc Genet 2009 ; 2 : 379–388. [CrossRef] [PubMed] [Google Scholar]
  16. Tripisciano C, Weiss R, Eichhorn T, et al. Different Potential of Extracellular Vesicles to Support Thrombin Generation: Contributions of Phosphatidylserine, Tissue Factor, and Cellular Origin. Sci Rep 2017 ; 7 : 1–11. [CrossRef] [PubMed] [Google Scholar]
  17. Merten M, Pakala R, Thiagarajan P, et al. Platelet microparticles promote platelet interaction with subendothelial matrix in a glycoprotein IIb/IIIa-dependent mechanism. Circulation 1999 ; 99 : 2577–2582. [CrossRef] [PubMed] [Google Scholar]
  18. Srikanthan S, Li W, Silverstein RL, et al. Exosome poly-ubiquitin inhibits platelet activation, downregulates CD36 and inhibits pro-atherothombotic cellular functions. J Thromb Haemost 2014 ; 12 : 1906–1917. [CrossRef] [PubMed] [Google Scholar]
  19. Leroyer AS, Rautou PE, Silvestre JS, et al. CD40 Ligand+ Microparticles From Human Atherosclerotic Plaques Stimulate Endothelial Proliferation and Angiogenesis. A Potential Mechanism for Intraplaque Neovascularization. J Am Coll Cardiol 2008 ; 52 : 1302–1311. [CrossRef] [PubMed] [Google Scholar]
  20. Michel JB, Virmani R, Arbustini E, et al. Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur Heart J 2011 ; 32 [PubMed] [Google Scholar]
  21. Wadey RM, Connolly KD, Mathew D, et al. Inflammatory adipocyte-derived extracellular vesicles promote leukocyte attachment to vascular endothelial cells. Atherosclerosis 2019 ; 283 : 19–27. [CrossRef] [PubMed] [Google Scholar]
  22. Wang F, Chen F, Shang Y, et al. Insulin resistance adipocyte-derived exosomes aggravate atherosclerosis by increasing vasa vasorum angiogenesis in diabetic ApoE −/− mice. Int J Cardiol 2018 ; 265 : 181–187. [CrossRef] [PubMed] [Google Scholar]
  23. Poisson J, Tanguy M, Davy H, et al. Erythrocyte-derived microvesicles induce arterial spasms in JAK2V617F myeloproliferative neoplasm. J Clin Invest 2020; 130 : 2630–43. [Google Scholar]
  24. Camus SM, De Moraes JA, Bonnin P, et al. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease. Blood 2015 ; 125 : 3805–3814. [CrossRef] [PubMed] [Google Scholar]
  25. Sinning JM, Losch J, Walenta K, et al. Circulating CD31 +/Annexin V + microparticles correlate with cardiovascular outcomes. Eur Heart J 2011 ; 32 : 2034–2041. [CrossRef] [PubMed] [Google Scholar]
  26. Deddens JC, Vrijsen KR, Colijn JM, et al. Circulating Extracellular Vesicles Contain miRNAs and are Released as Early Biomarkers for Cardiac Injury. J Cardiovasc Transl Res. 2016 ; 9 : 291–301. [CrossRef] [PubMed] [Google Scholar]
  27. Rodriguez JA, Orbe J, Saenz-Pipaon G, et al. Selective increase of cardiomyocyte derived extracellular vesicles after experimental myocardial infarction and functional effects on the endothelium. Thromb Res 2018 ; 170 : 1–9. [CrossRef] [PubMed] [Google Scholar]
  28. Anselmo A, Frank D, Papa L, et al. Myocardial hypoxic stress mediates functional cardiac extracellular vesicle release. Eur Heart J 2021; 42 : 2780–92. [CrossRef] [PubMed] [Google Scholar]
  29. Akbar N, Digby JE, Cahill TJ, et al. Endothelium-derived extracellular vesicles promote splenic monocyte mobilization in myocardial infarction. JCI insight 2017; 2. [Google Scholar]
  30. Loyer X, Zlatanova I, Devue C, et al. Intra-cardiac release of extracellular vesicles shapes inflammation following myocardial infarction short communication. Circ Res 2018 ; 123 : 100–106. [CrossRef] [PubMed] [Google Scholar]
  31. Nicolás-Ávila JA, Lechuga-Vieco A V., Esteban-Martínez L, et al. A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart. Cell 2020; 183 : 94–109.e23. [CrossRef] [PubMed] [Google Scholar]
  32. Bahtiyar G, Gutterman D, Lebovitz H. Heart Failure: a Major Cardiovascular Complication of Diabetes Mellitus. Curr Diab Rep 2016 ; 16 : 116. [CrossRef] [PubMed] [Google Scholar]
  33. Freeman DW, Noren Hooten N, Eitan E, et al. Altered Extracellular Vesicle Concentration, Cargo, and Function in Diabetes. Diabetes 2018 ; 67 : 2377–2388. [CrossRef] [PubMed] [Google Scholar]
  34. Gan L, Xie D, Liu J, et al. Small Extracellular Microvesicles Mediated Pathological Communications Between Dysfunctional Adipocytes and Cardiomyocytes as a Novel Mechanism Exacerbating Ischemia/Reperfusion Injury in Diabetic Mice. Circulation 2020; 141 : 968–83. [CrossRef] [PubMed] [Google Scholar]
  35. Di Carli MF, Janisse J, Ager J, et al. Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol 2003 ; 41 : 1387–1393. [CrossRef] [PubMed] [Google Scholar]
  36. Chen J-X, Zeng H, Reese J, et al. Overexpression of angiopoietin-2 impairs myocardial angiogenesis and exacerbates cardiac fibrosis in the diabetic db/db mouse model. Am J Physiol Circ Physiol 2012 ; 302 : H1003–H1012. [CrossRef] [PubMed] [Google Scholar]
  37. Caporali A, Meloni M, Völlenkle C, et al. Deregulation of microRNA-503 Contributes to Diabetes Mellitus-Induced Impairment of Endothelial Function and Reparative Angiogenesis After Limb Ischemia. Circulation 2011 ; 123 : 282–291. [CrossRef] [PubMed] [Google Scholar]
  38. Caporali A, Meloni M, Nailor A, et al. p75NTR-dependent activation of NF-κB regulates microRNA-503 transcription and pericyte-endothelial crosstalk in diabetes after limb ischaemia. Nat Commun 2015 ; 6 : 8024. [CrossRef] [PubMed] [Google Scholar]
  39. Njock MS, Cheng HS, Dang LT, et al. Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood 2015 ; 125 : 3202–3212. [CrossRef] [PubMed] [Google Scholar]
  40. Jansen F, Yang X, Hoelscher M, et al. Endothelial microparticle-mediated transfer of microRNA-126 promotes vascular endothelial cell repair via spred1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 2013 ; 128 : 2026–2038. [CrossRef] [PubMed] [Google Scholar]
  41. Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009 ; 2 [Google Scholar]
  42. Wu K, Yang Y, Zhong Y, et al. The effects of microvesicles on endothelial progenitor cells are compromised in type 2 diabetic patients via downregulation of the miR-126/VEGFR2 pathway. Am J Physiol Metab 2016 ; 310 : E828–E837. [Google Scholar]
  43. Nakagami H, Kaneda Y, Ogihara T, et al. Endothelial Dysfunction in Hyperglycemia as a Trigger of Atherosclerosis. Curr Diabetes Rev 2005 ; 1 : 59–63. [CrossRef] [PubMed] [Google Scholar]
  44. Nandi SS, Mishra PK. Targeting miRNA for Therapy of Juvenile and Adult Diabetic Cardiomyopathy. Advances in experimental medicine and biology. Adv Exp Med Biol 2018 : 47–59. [CrossRef] [PubMed] [Google Scholar]
  45. Wang X, Huang W, Liu G, et al. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol 2014 ; 74 : 139–150. [CrossRef] [PubMed] [Google Scholar]
  46. Garcia NA, Ontoria-Oviedo I, González-King H, et al. Glucose Starvation in Cardiomyocytes Enhances Exosome Secretion and Promotes Angiogenesis in Endothelial Cells. PLoS One 2015 ; 10 : e0138849. [Google Scholar]
  47. Wiklander OPB, Brennan M, Lötvall J, et al. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med 2019 ; 11 : 8521. [CrossRef] [Google Scholar]
  48. Hergenreider E, Heydt S, Tréguer K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 2012 ; 14 : 249–256. [CrossRef] [PubMed] [Google Scholar]
  49. Lai RC, Chen TS, Lim SK. Mesenchymal stem cell exosome: A novel stem cell-based therapy for cardiovascular disease. Regen Med 2011 ; 6 : 481–492. [CrossRef] [PubMed] [Google Scholar]
  50. Pezzana C, Agnely F, Bochot A, et al. Extracellular Vesicles and Biomaterial Design: New Therapies for Cardiac Repair. Trends Mol Med 2021; 27 : 231–47. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.