Contraception
Open Access
Issue
Med Sci (Paris)
Volume 37, Number 11, Novembre 2021
Contraception
Page(s) 1014 - 1020
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021163
Published online 01 December 2021
  1. United Nations. World population prospects: the 2019 revision. United Nations Population Division, 2019. [Google Scholar]
  2. Bongaarts J, Sitruk-Ware R. Climate change and contraception. BMJ Sex Reprod Health 2019 ; 45 : 233–235. [Google Scholar]
  3. Bongaarts JB, O’Neill B. Global warming policy: is population left out in the cold?. Science 2018 ; 361 : 650–652. [Google Scholar]
  4. Townsend J, Sitruk-Ware R, RamaRao S, Sailer J. Contraceptive technologies for global health: ethically getting to safe, effective and acceptable options for women and men. Drug Deliv Transl Res 2020; 10 : 299–303. [Google Scholar]
  5. Nations Unies. Objectifs du millénaire pour le développement - Rapport 2008. https://unstats.un.org/unsd/mdg/Resources/Static/Products/Progress2008/MDG_Report_2008_Fr.pdf. [Google Scholar]
  6. Programme des Nations Unies pour le développement. Agenda 2030 pour le développement durable. https://www.undp.org/content/undp/fr/home/2030-agenda-for-sustainable-development.html. [Google Scholar]
  7. Chun HM, Carpenter RJ, Macalino GE, Crum-Cianflone NF. The role of sexually transmitted infections in hiv-1 progression: a comprehensive review of the literature. J Sex Transm Dis 2013 ; 2013 : 176459. [Google Scholar]
  8. Hynes JS, Sales JM, Sheth AN. et al. Interest in multipurpose prevention technologies to prevent HIV/STIs and unintended pregnancy among young women in the United States. Contraception 2018 ; 97 : 277–284. [Google Scholar]
  9. Sitruk-Ware R, Nath A, Mishell DR, Jr.. Contraception technology: past, present and future. Contraception 2013 ; 87 : 319–330. [Google Scholar]
  10. Blithe DL. Pipeline for contraceptive development. Fertil Steril 2016 ; 106 : 1295–1302. [Google Scholar]
  11. Klipping C, Duijkers I, Mawet M, et al. Endocrine and metabolic effects of an oral contraceptive containing estetrol and drospirenone. Contraception 2021; 103 : 213–21. [Google Scholar]
  12. Archer DF, Merkatz RB, Bahamondes L. et al. Efficacy of the 1-year (13-cycle) segesterone acetate and ethinylestradiol contraceptive vaginal system: results of two multicentre, open-label, single-arm, phase 3 trials. Lancet Glob Health 2019 ; 7 : e1054–e1064. [Google Scholar]
  13. Gemzell-Danielsson K, Sitruk-Ware R, Creinin MD. et al. Segesterone acetate/ethinyl estradiol 12-month contraceptive vaginal system safety evaluation. Contraception 2019 ; 99 : 323–328. [Google Scholar]
  14. Jensen JT, Edelman AB, Chen BA. et al. Continuous dosing of a novel contraceptive vaginal ring releasing Nestorone® and estradiol: pharmacokinetics from a dose-finding study. Contraception 2018 ; 97 : 422–427. [Google Scholar]
  15. Chen MJ, Creinin MD, Turok DK, et al. Dose-finding study of a 90-day contraceptive vaginal ring releasing estradiol and segesterone acetate. Contraception 2020; 102 : 168–73. [Google Scholar]
  16. Scarabin PY, Canonico M, Plu-Bureau G, Oger E. Menopause and hormone therapy in the 21st century: why promote transdermal estradiol and progesterone? Heart 2020; 106 : 1278. [Google Scholar]
  17. Roy M, Hazra A, Merkatz R, et al. Progesterone vaginal ring study group at participating centers progesterone vaginal ring as a new contraceptive option for lactating mothers: evidence from a multicenter non-randomized comparative clinical trial in India. Contraception 2020; 102 : 159–67. [Google Scholar]
  18. Boyd P, Fetherston SM, McCoy CF. et al. Matrix and reservoir-type multipurpose vaginal rings for controlled release of dapivirine and levonorgestrel. Int J Pharm 2016 ; 511 : 619–629. [Google Scholar]
  19. Smith JM, Moss JA, Srinivasan P. et al. Novel multipurpose pod-intravaginal ring for the prevention of HIV, HSV, and unintended pregnancy: Pharmacokinetic evaluation in a macaque model. PLoS One 2017 ; 12 : e0185946. [Google Scholar]
  20. Reeves MF, Katz BH, Canela JM. et al. A randomized comparison of a novel nitinol-frame low-dose-copper intrauterine contraceptive and a copper T380S intrauterine contraceptive. Contraception 2017 ; 95 : 544–548. [Google Scholar]
  21. OCONMED. https://www.oconmed.com/en/contraception/intrauterine-ball-iub/. [Google Scholar]
  22. Hsia JK, Creinin MD. Intrauterine contraception. Semin Reprod Med 2016 ; 34 : 175–182. [Google Scholar]
  23. Hu LX, Hu SF, Rao M. et al. Studies of acute and subchronic systemic toxicity associated with a copper/low-density polyethylene nanocomposite intrauterine device. Int J Nanomedicine 2018 ; 13 : 4913–4926. [Google Scholar]
  24. Tian K, Xie C, Xia X. Chitosan/alginate multilayer film for controlled release of IDM on Cu/LDPE composite intrauterine devices. Colloids Surf B Biointerfaces 2013 ; 1 : 109: 82–89. [Google Scholar]
  25. Brache V, Sales Viera C, Plagianos M, et al. Pharmacodynamics and pharmacokinetics of a copper intrauterine contraceptive system releasing ulipristal acetate: a randomized proof-of-concept study. Contraception 2021; S0010–7824(21)00193–1. [Google Scholar]
  26. ANSM. Résumé des caractéristiques du produit. Jaydess. http://agence-prd.ansm.sante.fr/php/ecodex/rcp/R0224926.htm. [Google Scholar]
  27. Johnson AR, Forster SP, White D, et al. Drug eluting implants in pharmaceutical development and clinical practice. Expert Opin Drug Deliv 2021; 11 : 1–17. [Google Scholar]
  28. MedinCell BEPO®. https://www.medincell.com/bepo/. [Google Scholar]
  29. Paredes AJ, Ramöller IK, McKenna PE, et al. Microarray patches: breaking down the barriers to contraceptive care and HIV prevention for women across the globe. Adv Drug Deliv Rev 2021; 5 : S0169–409X. [Google Scholar]
  30. Blakney AK, Krogstad EA, Jiang YH, Woodrow KA. Delivery of multipurpose prevention drug combinations from electrospun nanofibers using composite microarchitectures. Int J Nanomedicine 2014 ; 9 : 2967–2978. [Google Scholar]
  31. Derby N, Lal M, Aravantinou M. et al. Griffithsin carrageenan fast dissolving inserts prevent SHIV HSV-2 and HPV infections in vivo. Nat Commun 2018 ; 9 : 3881. [Google Scholar]
  32. Vigani B, Rossi S, Sandri G, et al. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics 2020; 12 : 859. [Google Scholar]
  33. Notario-Perez F, Martin-Illana A, Cazorla-Luna R, et al. Mucoadhesive vaginal discs based on cyclodextrin and surfactants for the controlled release of antiretroviral drugs to prevent the sexual transmission of HIV. Pharmaceutics 2020; 12 : 321. [Google Scholar]
  34. Nel AM, Mitchnick LB, Risha P. et al. Acceptability of vaginal film, soft-gel capsule, and tablet as potential microbicide delivery methods among African women. J Womens Health (Larchmt) 2011 ; 20 : 1207–1214. [Google Scholar]
  35. Villarruel Mendoza LA, Scilletta NA, Bellino MG, et al. Recent advances in micro-electro-mechanical devices for controlled drug release applications. Front Bioeng Biotechnol 2020; 8 : 827. [Google Scholar]
  36. Conti M, Hsieh M, Zamah AM, Jeong SO. Novel signaling mechanisms in the ovary during oocyte maturation and ovulation. Mol Cell Endocrinol 2012 ; 356 : 65–73. [Google Scholar]
  37. Hanna CB, Yao S, Patta MC. et al. WEE2 is an oocyte-specific meiosis inhibitor in rhesus macaque monkeys. Biol Reprod 2010 ; 82 : 1190–1197. [Google Scholar]
  38. Liu PY, Swerdloff RS, Anawalt BD. et al. Determinants of the rate and extent of spermatogenic suppression during hormonal male contraception: an integrated analysis. J Clin Endocrinol Metab 2008 ; 93 : 1774–1783. [Google Scholar]
  39. Ilani N, Roth MY, Amory JK. et al. New combination of testosterone and nestorone transdermal gels for male hormonal contraception. J Clin Endocrinol Metab 2012 ; 97 : 3476–3486. [Google Scholar]
  40. Roth MY, Shih G, Ilani N. et al. Acceptability of a transdermal gel-based male hormonal contraceptive in a randomized controlled trial. Contraception 2014 ; 90 : 407–412. [Google Scholar]
  41. Anawalt BD, Roth MY, Ceponis J. et al. Combined nestorone-testosterone gel suppresses serum gonadotropins to concentrations associated with effective hormonal contraception in men. Andrology 2019 ; 7 : 878–887. [Google Scholar]
  42. Yuen F, Wu S, Thirumalai A. et al. Preventing secondary exposure to women from men applying a novel nestorone/testosterone contraceptive gel. Andrology 2019 ; 7 : 235–243. [Google Scholar]
  43. Heinemann K, Saad F, Wiesemes M. et al. Attitudes toward male fertility control: results of a multinational survey on four continents. Hum Reprod 2005 ; 20 : 549–556. [Google Scholar]
  44. Long JE, Lee MS, Blithe DL. Update on novel hormonal and non-hormonal male contraceptive development. J Clin Endocrinol Metab. 2021 Jan 22. [Google Scholar]
  45. Nieschlag E, Kumar N, Sitruk-Ware R. 7alpha-methyl-19-nortestosterone (MENT™): the Population Council’s contribution to research on male contraception and treatment of hypogonadism. Contraception 2013 ; 87 : 288–295. [Google Scholar]
  46. Nguyen BT, Farrant MT, Anawalt BD, et al. Acceptability of oral dimethandrolone undecanoate in a 28-day placebo-controlled trial of a hormonal male contraceptive prototype. Contraception 2020; 102 : 52–7. [Google Scholar]
  47. Abbe CR, Page ST, Thirumalai A. Male contraception. Yale J Biol Med 2020; 93 : 603–13. [Google Scholar]
  48. Matzuk MM, McKeown MR, Filippakopoulos P. et al. Small-molecule inhibition of BRDT for male contraception. Cell 2012 ; 150 : 673–684. [Google Scholar]
  49. O’Rand MG, Widgren EE, Beyler S, Richardson RT. Inhibition of human sperm motility by contraceptive anti-eppin antibodies from infertile male monkeys: effect on cyclic adenosine monophosphate. Biol Reprod 2009 ; 80 : 279–285. [Google Scholar]
  50. Lishko PV, Mannowetz N. CatSper: a unique calcium channel of the sperm flagellum. Curr Opin Physiol 2018 ; 2 : 109–113. [Google Scholar]
  51. Mok KW, Mruk DD, Lie PPY. et al. Adjudin, a potential male contraceptive, exerts its effects locally in the seminiferous epithelium of mammalian testes. Reproduction 2011 ; 141 : 571–580. [Google Scholar]
  52. Aydin H, Sultana A, Li S, Thavalingam A, Lee JE. Molecular architecture of the human sperm IZUMO1 and egg JUNO fertilization complex. Nature 2016 ; 534 : 562–565. [Google Scholar]
  53. Jean C, Haghighirad F, Zhu Y. et al. JUNO, the receptor of sperm IZUMO1, is expressed by the human oocyte and is essential for human fertilization. Hum Reprod 2019 ; 34 : 118–126. [Google Scholar]
  54. Waller D, Bolick D, Lissner E. et al. Azoospermia in rabbits following an intravas injection of Vasalgel. Basic Clin Androl 2016 ; 26 : 6. [Google Scholar]
  55. Jensen JT. Nonsurgical permanent contraception for women: let’s complete the job. Contraception 2015 ; 92 : 89–90. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.