Open Access
Med Sci (Paris)
Volume 37, Number 10, Octobre 2021
Page(s) 836 - 839
Section Le Magazine
Published online 14 October 2021
  1. Van Steensel B, Belmont AS. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 2017 ; 169 : 780–791. [CrossRef] [PubMed] [Google Scholar]
  2. Worman HJ, Fong LG, Muchir A, Young SG. Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest 2009 ; 119 : 1825–1836. [CrossRef] [PubMed] [Google Scholar]
  3. Emery AE. Emery-Dreifuss syndrome. J Med Genet 1989 ; 26 : 637–641. [CrossRef] [PubMed] [Google Scholar]
  4. Bonne G, Mercuri E, Muchir A, et al. Clinical and molecular genetic spectrum of autosomal dominant Emery-Dreifuss muscular dystrophy due to mutations of the lamin A/C gene. Ann Neurol 2000 ; 48 : 170–180. [CrossRef] [PubMed] [Google Scholar]
  5. Houliston E, Guilly MN, Courvalin JC, Maro B. Expression of nuclear lamins during mouse preimplantation development. Development 1988 ; 102 : 271–278. [CrossRef] [PubMed] [Google Scholar]
  6. Hasselberg NE, Haland TF, Saberniak J, et al. Lamin A/C cardiomyopathy: young onset, high penetrance, and frequent need for heart transplantation. Eur Heart J 2018 ; 39 : 853–860. [CrossRef] [PubMed] [Google Scholar]
  7. Long PA, Evans JM, Olson TM. Diagnostic yield of whole exome sequencing in pediatric dilated cardiomyopathy. J Cardiovasc Dev Dis 2017 ; 4 : 1–10. [Google Scholar]
  8. Arimura T, Helbling-Leclerc A, et al. Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum Mol Genet 2005 ; 14 : 155–169. [CrossRef] [PubMed] [Google Scholar]
  9. Guenantin AC, Jebeniani I, Leschik J, et al. Targeting the histone demethylase LSD1 prevents cardiomyopathy in a mouse model of laminopathy. J Clin Invest 2021; 131 : e136788. [Google Scholar]
  10. McDonald OG, Wu H, Timp W, et al. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat Struct Mol Biol 2011 ; 18 : 867–874. [CrossRef] [PubMed] [Google Scholar]
  11. Porrello ER, Mahmoud AI, Simpson E, et al. Transient regenerative potential of the neonatal mouse heart. Science 2011 ; 331 : 1078–1080. [CrossRef] [PubMed] [Google Scholar]
  12. Liu H, Zhang CH, Ammanamanchi N, et al. Control of cytokinesis by beta-adrenergic receptors indicates an approach for regulating cardiomyocyte endowment. Sci Transl Med 2019; 11 : eaaw6419. [CrossRef] [PubMed] [Google Scholar]
  13. Foster CT, Dovey OM, Lezina L, et al. Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability. Mol Cell Biol 2010 ; 30 : 4851–4863. [CrossRef] [PubMed] [Google Scholar]
  14. Shi YJ, Matson C, Lan F, et al. Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 2005 ; 19 : 857–864. [CrossRef] [PubMed] [Google Scholar]
  15. Choi HJ, Park JH, Park M, et al. UTX inhibits EMT-induced breast CSC properties by epigenetic repression of EMT genes in cooperation with LSD1 and HDAC1. EMBO Rep 2015 ; 16 : 1288–1298. [CrossRef] [PubMed] [Google Scholar]
  16. Gittenberger-de Groot AC, Blom NM, Aoyama N, et al. The role of neural crest and epicardium-derived cells in conduction system formation. Novartis Found Symp 2003; 250 : 125–34; discussion 34–41, 276–9. [PubMed] [Google Scholar]
  17. Johnston JR, Selgrade DF, McNally EM. Epigenetic reprogramming to prevent genetic cardiomyopathy. J Clin Invest 2021; 131 : e143684. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.