Open Access
Issue
Med Sci (Paris)
Volume 37, Number 8-9, Août–Septembre 2021
Page(s) 742 - 751
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021110
Published online 07 September 2021
  1. TappendenKA. Pathophysiology of short bowel syndrome. J Parenter Enter Nutr 2014 ; 38 : S14–S22. [CrossRef] [Google Scholar]
  2. PironiL, CorcosO, ForbesA, et al. Intestinal failure in adults: recommendations from the ESPEN expert groups. Clin Nutr Edinb Scotl 2018 ; 37 : 1798–1809. [CrossRef] [Google Scholar]
  3. BolandE, ThompsonJ, RochlingF, et al. A 25-year experience with postresection short-bowel syndrome secondary to radiation therapy. Am J Surg 2010 ; 200 : 690–693. [CrossRef] [PubMed] [Google Scholar]
  4. JeppesenPB. Spectrum of short bowel syndrome in adults: intestinal insufficiency to intestinal failure. J Parenter Enter Nutr 2014 ; 38 : S8–13. [CrossRef] [PubMed] [Google Scholar]
  5. Massironi S, Cavalcoli F, Rausa E, et al. Understanding short bowel syndrome: current status and future perspectives. Dig Liver Dis 2020; 52 : 253–61. [CrossRef] [PubMed] [Google Scholar]
  6. Nightingale JM, Kamm MA, Sijp JR van der, et al. Gastrointestinal hormones in short bowel syndrome. Peptide YY may be the colonic brake to gastric emptying. Gut 1996; 39 : 267–72. [CrossRef] [PubMed] [Google Scholar]
  7. BilliauwsL, MaggioriL, JolyF, et al. Medical and surgical management of short bowel syndrome. J Visc Surg 2018 ; 155 : 283–291. [CrossRef] [PubMed] [Google Scholar]
  8. HofmannAF, PoleyJR. Role of bile acid malabsorption in pathogenesis of diarrhea and steatorrhea in patients with ileal resection. I. Response to cholestyramine or replacement of dietary long chain triglyceride by medium chain triglyceride. Gastroenterology 1972 ; 62 : 918–934. [CrossRef] [PubMed] [Google Scholar]
  9. CamilleriM, SellinJH, BarrettKE. Pathophysiology, evaluation, and management of chronic watery diarrhea. Gastroenterology 2017 ; 152 : 515–32e2. [CrossRef] [Google Scholar]
  10. DebongnieJC, PhillipsSF. Capacity of the human colon to absorb fluid. Gastroenterology 1978 ; 74 : 698–703. [CrossRef] [PubMed] [Google Scholar]
  11. WinklerMF, HaganE, WetleT, et al. An Exploration of quality of life and the experience of living with home parenteral nutrition. J Parenter Enter Nutr 2010 ; 34 : 395–407. [CrossRef] [Google Scholar]
  12. NightingaleJMD. Management of patients with a short bowel. World J Gastroenterol 2001 ; 7 : 741–751. [CrossRef] [PubMed] [Google Scholar]
  13. JeejeebhoyKN. Short bowel syndrome: a nutritional and medical approach. Can Med Assoc J 2002 ; 166 : 1297–1302. [Google Scholar]
  14. GraceyM.. The contaminated small bowel syndrome: pathogenesis, diagnosis, and treatment. Am J Clin Nutr 1979 ; 32 : 234–243. [CrossRef] [PubMed] [Google Scholar]
  15. DiBaiseJK, YoungRJ, VanderhoofJA. Enteric microbial flora, bacterial overgrowth, and short-bowel syndrome. Clin Gastroenterol Hepatol 2006 ; 4 : 11–20. [CrossRef] [PubMed] [Google Scholar]
  16. CrennP.. Net digestive absorption and adaptive hyperphagia in adult short bowel patients. Gut 2004 ; 53 : 1279–1286. [CrossRef] [PubMed] [Google Scholar]
  17. PorusRL. Epithelial hyperplasia following massive small bowel resection in man. Gastroenterology 1965 ; 48 : 753–757. [CrossRef] [PubMed] [Google Scholar]
  18. JolyF, MayeurC, MessingB, et al. Morphological adaptation with preserved proliferation/transporter content in the colon of patients with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2009 ; 297 : G116–G123. [CrossRef] [PubMed] [Google Scholar]
  19. JeppesenP, HartmannB, ThulesenJ, et al. Elevated plasma glucagon-like peptide 1 and 2 concentrations in ileum resected short bowel patients with a preserved colon. Gut 2000 ; 47 : 370–376. [CrossRef] [PubMed] [Google Scholar]
  20. GillardL, BilliauwsL, Stan-IugaB, et al. Enhanced ghrelin levels and hypothalamic orexigenic agrp and npy neuropeptide expression in models of jejuno-colonic short bowel syndrome. Sci Rep 2016 ; 6 : 28345. [CrossRef] [PubMed] [Google Scholar]
  21. BrubakerPL. Glucagon-like peptide-2 and the regulation of intestinal growth and function. Compr Physiol 2018 ; 8 : 26. [Google Scholar]
  22. MartinGR, WallaceLE, HartmannB, et al. Nutrient-stimulated GLP-2 release and crypt cell proliferation in experimental short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2005 ; 288 : G431–G438. [CrossRef] [PubMed] [Google Scholar]
  23. BrietF, FlouriéB, AchourL, et al. Bacterial adaptation in patients with short bowel and colon in continuity. Gastroenterology 1995 ; 109 : 1446–1453. [CrossRef] [PubMed] [Google Scholar]
  24. NordgaardI, HansenBS, MortensenPB. Colon as a digestive organ in patients with short bowel. Lancet 1994 ; 343 : 373–376. [CrossRef] [PubMed] [Google Scholar]
  25. BrooksL, ViardotA, TsakmakiA, et al. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Mol Metab 2017 ; 6 : 48–60. [CrossRef] [PubMed] [Google Scholar]
  26. WichmannA, AllahyarA, GreinerTU, et al. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 2013 ; 14 : 582–590. [CrossRef] [PubMed] [Google Scholar]
  27. MorganJ, DibbM, LalS. Intestinal failure-associated liver disease in adult patients. Curr Opin Clin Nutr Metab Care 2019 ; 22 : 383–388. [CrossRef] [PubMed] [Google Scholar]
  28. NightingaleJM, Lennard-JonesJE, GertnerDJ, et al. Colonic preservation reduces need for parenteral therapy, increases incidence of renal stones, but does not change high prevalence of gall stones in patients with a short bowel. Gut 1992 ; 33 : 1493–1497. [CrossRef] [PubMed] [Google Scholar]
  29. SmithLH, FrommH, HofmannAF. Acquired hyperoxaluria, nephrolithiasis, and intestinal disease. Description of a syndrome. N Engl J Med 1972 ; 286 : 1371–1375. [CrossRef] [PubMed] [Google Scholar]
  30. MayeurC, GratadouxJJ, BridonneauC, et al. Faecal D/L lactate ratio is a metabolic signature of microbiota imbalance in patients with short bowel syndrome. PLoS One 2013 ; 8 : e54335. [CrossRef] [PubMed] [Google Scholar]
  31. NygaardL, SkallerupA, OlesenSS, et al. Osteoporosis in patients with intestinal insufficiency and intestinal failure: prevalence and clinical risk factors. Clin Nutr 2018 ; 37 : 1654–1660. [CrossRef] [PubMed] [Google Scholar]
  32. BikleDD, VitaminD. Insufficiency/deficiency in gastrointestinal disorders. J Bone Miner Res 2007 ; 22 : V50–V54. [CrossRef] [PubMed] [Google Scholar]
  33. HylanderE, LadefogedK, MadsenS. Calcium balance and bone mineral content following small-intestinal resection. Scand J Gastroenterol 1981 ; 16 : 167–176. [CrossRef] [PubMed] [Google Scholar]
  34. LadefogedK, NicolaidouP, JarnumS. Calcium, phosphorus, magnesium, zinc, and nitrogen balance in patients with severe short bowel syndrome. Am J Clin Nutr 1980 ; 33 : 2137–2144. [CrossRef] [PubMed] [Google Scholar]
  35. AmiotA, MessingB, CorcosO, et al. Determinants of home parenteral nutrition dependence and survival of 268 patients with non-malignant short bowel syndrome. Clin Nutr 2013 ; 32 : 368–374. [CrossRef] [PubMed] [Google Scholar]
  36. MatareseLE. Nutrition and fluid optimization for patients with short bowel syndrome. J Parenter Enter Nutr 2013 ; 37 : 161–170. [CrossRef] [Google Scholar]
  37. MessingB, CrennP, BeauP, et al. Long-term survival and parenteral nutrition dependence in adult patients with the short bowel syndrome. Gastroenterology 1999 ; 117 : 1043–1050. [CrossRef] [PubMed] [Google Scholar]
  38. Dibb M, Lal S. Home parenteral nutrition: vascular access and related complications. Nutr Clin Pract 2017 ; 32 : 769–776. [CrossRef] [PubMed] [Google Scholar]
  39. Daoud DC, Wanten G, Joly F. Antimicrobial locks in patients receiving home parenteral nutrition. Nutrients 2020; 12 : 439. [CrossRef] [Google Scholar]
  40. Pironi L, Boeykens K, Bozzetti F, et al. ESPEN guideline on home parenteral nutrition. Clin Nutr Edinb Scotl 2020; 39 : 1645–66. [CrossRef] [Google Scholar]
  41. ManjiN, BistrianBR, MascioliEA, et al. Gallstone disease in patients with severe short bowel syndrome dependent on parenteral nutrition. J Parenter Enteral Nutr 1989 ; 13 : 461–464. [CrossRef] [Google Scholar]
  42. PironiL, GouletO, BuchmanA, et al. Outcome on home parenteral nutrition for benign intestinal failure: a review of the literature and benchmarking with the European prospective survey of ESPEN. Clin Nutr 2012 ; 31 : 831–845. [CrossRef] [PubMed] [Google Scholar]
  43. CavicchiM, BeauP, CrennP, et al. Prevalence of liver disease and contributing factors in patients receiving home parenteral nutrition for permanent intestinal failure. Ann Intern Med 2000 ; 132 : 525–532. [CrossRef] [PubMed] [Google Scholar]
  44. JolyF, BaxterJ, StaunM, et al. Five-year survival and causes of death in patients on home parenteral nutrition for severe chronic and benign intestinal failure. Clin Nutr 2018 ; 37 : 1415–1422. [CrossRef] [PubMed] [Google Scholar]
  45. Beyer-BerjotL, JolyF, MaggioriL, et al. Segmental reversal of the small bowel can end permanent parenteral nutrition dependency: an experience of 38 adults with short bowel syndrome. Ann Surg 2012 ; 256 : 739–744. [CrossRef] [PubMed] [Google Scholar]
  46. ByrneTA, WilmoreDW, IyerK, et al. Growth hormone, glutamine, and an optimal diet reduces parenteral nutrition in patients with short bowel syndrome. Ann Surg 2005 ; 242 : 655–661. [CrossRef] [PubMed] [Google Scholar]
  47. JeppesenPB, SanguinettiEL, BuchmanA, et al. Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients. Gut 2005 ; 54 : 1224–1231. [CrossRef] [PubMed] [Google Scholar]
  48. SeidnerDL, FujiokaK, BoullataJI, et al. Reduction of parenteral nutrition and hydration support and safety with long-term teduglutide treatment in patients with short bowel syndrome−associated intestinal failure: STEPS-3 study. Nutr Clin Pract 2018 ; 33 : 520–527. [CrossRef] [PubMed] [Google Scholar]
  49. Pevny S, Pape UF, Elezkurtaj S, et al. De novo development of distal jejunal and duodenal adenomas after 41 months of teduglutide treatment in a patient with short-bowel syndrome: a case report. J Parenter Enteral Nutr 2021; 45 : 652–6. [CrossRef] [Google Scholar]
  50. Hvistendahl MK, Naimi RM, Enevoldsen LH, et al. Effect of glepaglutide, a long-acting glucagon-like peptide-2 analog, on gastrointestinal transit time and motility in patients with short bowel syndrome: findings from a randomized trial. J Parenter Enteral Nutr 2020; 44 : 1535–44. [CrossRef] [Google Scholar]
  51. Hargrove DM, Alagarsamy S, Croston G, et al. Pharmacological characterization of apraglutide, a novel long-acting peptidic glucagon-like peptide-2 agonist, for the treatment of short bowel syndrome. J Pharmacol Exp Ther 2020; 373 : 193–203. [CrossRef] [PubMed] [Google Scholar]
  52. KunkelD, BasseriB, LowK, et al. Efficacy of the glucagon-like peptide-1 agonist exenatide in the treatment of short bowel syndrome. Neurogastroenterol Motil 2011 ; 23 : 7. [Google Scholar]
  53. Danne C, Rolhion N, Sokol H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat Rev Gastroenterol Hepatol 2021; doi: 10.1038/s41575-021-00441-5. [PubMed] [Google Scholar]
  54. GillardL, MayeurC, RobertV, et al. Microbiota Is involved in post-resection adaptation in humans with short bowel syndrome. Front Physiol 2017 ; 8 : 224. [CrossRef] [PubMed] [Google Scholar]
  55. Sugimoto S, Kobayashi E, Fujii M, et al. An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature 2021; 592 : 99–104. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.