Open Access
Med Sci (Paris)
Volume 37, Number 6-7, Juin-Juillet 2021
Page(s) 575 - 577
Section Le Magazine
Published online 28 June 2021
  1. Béjot Y, Touzé E, Jacquin A, et al. Épidémiologie des accidents vasculaires cérébraux. Med Sci (Paris) 2009 ; 25 : 727–732. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. O’Collins VE, Macleod MR, Donnan GA, et al. 1,026 experimental treatments in acute stroke. Ann Neurol 2006 ; 59 : 467–477. [CrossRef] [PubMed] [Google Scholar]
  3. Zhou D, Haddad GG Genetic analysis of hypoxia tolerance and susceptibility in Drosophila and humans. Annu Rev Genom Hum Genet 2013 ; 14 : 25–43. [Google Scholar]
  4. Blondeau N, Heurteaux C La tolérance cérébrale : un choix prometteur vers de nouvelles thérapies contre les maladies neurologiques. Med Sci (Paris) 2004 ; 20 : 1109–1114. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Vigne P, Tauc M, Frelin C Strong dietary restrictions protect Drosophila against anoxia/reoxygenation injuries. PLoS One 2009 ; 4 : e5422. [CrossRef] [PubMed] [Google Scholar]
  6. Longo LD, Packianathan S, McQueary JA, et al. Acute hypoxia increases ornithine decarboxylase activity and polyamine concentrations in fetal rat brain. Proc Natl Acad Sci USA 1993 ; 90 : 692–696. [Google Scholar]
  7. Zhao YJ, Xu CQ, Zhang WH, et al. Role of polyamines in myocardial ischemia/reperfusion injury and their interactions with nitric oxide. Eur J Pharmacol 2007 ; 562 : 236–246. [CrossRef] [PubMed] [Google Scholar]
  8. Babu GN, Sailor KA, Beck J, et al. Ornithine decarboxylase activity in in vivo and in vitro models of cerebral ischemia. Neurochem Res 2003 ; 28 : 1851–1857. [CrossRef] [PubMed] [Google Scholar]
  9. Puleston DJ, Buck MD, Klein Geltink RI, et al. Polyamines and eIF5A hypusination modulate mitochondrial respiration and macrophage activation. Cell Metab 2019 ; 30 : 352–363. [CrossRef] [PubMed] [Google Scholar]
  10. Melis N, Rubera I, Cougnon M, et al. Targeting eIF5A hypusination prevents anoxic cell death through mitochondrial silencing and improves kidney transplant outcome. J Am Soc Nephrol 2017 ; 28 : 811–822. [Google Scholar]
  11. Bourourou M, Gouix E, Melis N, et al. Inhibition of eIF5A hypusination pathway as a new pharmacological target for stroke therapy. J Cereb Blood Flow Metab 2020. doi : 10.1177/0271678X20928882. [PubMed] [Google Scholar]
  12. Giraud S, Kerforne T, Zely J, et al. The inhibition of eIF5A hypusination by GC7, a preconditioning protocol to prevent brain death-induced renal injuries in a preclinical porcine kidney transplantation model. Am J Transplant 2020; 20 : 3326–40. [CrossRef] [PubMed] [Google Scholar]
  13. Balaban RS, Nemoto S, Finkel T Mitochondria, oxidants, and aging. Cell 2005 ; 120 : 483–495. [CrossRef] [PubMed] [Google Scholar]
  14. Quatros-Quemener V, Chamaillard L, Bouet F Les polyamines : rôle diagnostique et cible thérapeutique en cancérologie. Med Sci (Paris) 1999 ; 15 : 1078–1085. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.