Open Access
Med Sci (Paris)
Volume 37, Number 1, Janvier 2021
Page(s) 35 - 40
Section M/S Revues
Published online 25 January 2021
  1. Woof JM, Mestecky J. Mucosal immunoglobulins. Immunol Rev 2005 ; 206 : 64–82. [CrossRef] [PubMed] [Google Scholar]
  2. Sterlin D, Fadlallah J, Adams O, et al. Human IgA binds a diverse array of commensal bacteria. J Exp Med 2020; 217 : e20181635. [CrossRef] [PubMed] [Google Scholar]
  3. Bruhns P, Jönsson F. Mouse and human FcR effector functions. Immunol Rev 2015 ; 268 : 25–51. [CrossRef] [PubMed] [Google Scholar]
  4. Biram A, Strömberg A, Winter E, et al. BCR affinity differentially regulates colonization of the subepithelial dome and infiltration into germinal centers within Peyer’s patches. Nat Immunol 2019 ; 20 : 482–492. [CrossRef] [PubMed] [Google Scholar]
  5. Kumar N, Arthur CP, Ciferri C, Matsumoto ML. Structure of the secretory immunoglobulin A core. Science 2020; 367 : 1008–14. [CrossRef] [Google Scholar]
  6. Mostov KE, Friedlander M, Blobel G. The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature 1984 ; 308 : 37–43. [CrossRef] [PubMed] [Google Scholar]
  7. Rochereau N, Drocourt D, Perouzel E, et al. Dectin-1 is essential for reverse transcytosis of glycosylated SIgA-antigen complexes by intestinal M cells. PLoS Biol 2013 ; 11 : e1001658. [CrossRef] [PubMed] [Google Scholar]
  8. Macpherson AJ, Gatto D, Sainsbury E, et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 2000 ; 288 : 2222–2226. [CrossRef] [Google Scholar]
  9. Wilmore JR, Gaudette BT, Gomez Atria D, et al. Commensal microbes induce serum IgA responses that protect against polymicrobial sepsis. Cell Host Microbe 2018 ; 23(302–11): e3. [CrossRef] [Google Scholar]
  10. Secchi M, Bazzigaluppi E, Brigatti C, et al. COVID-19 survival associates with the immunoglobulin response to the SARS-CoV-2 spike receptor binding domain. J Clin Invest 2020 Nov 9; 142804. doi:10.1172/JCI142804. [PubMed] [Google Scholar]
  11. Palm NW, de Zoete MR, Cullen TW, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 2014 ; 158 : 1000–1010. [CrossRef] [PubMed] [Google Scholar]
  12. van der Waaij LA, Limburg PC, Mesander G, van der Waaij D. In vivo IgA coating of anaerobic bacteria in human faeces. Gut 1996 ; 38 : 348–354. [CrossRef] [PubMed] [Google Scholar]
  13. Bunker JJ, Erickson SA, Flynn TM, et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 2017; 358 : eaan6619. [CrossRef] [Google Scholar]
  14. Bunker JJ, Flynn TM, Koval JC, et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 2015 ; 43 : 541–553. [CrossRef] [PubMed] [Google Scholar]
  15. Chen JW, Rice TA, Bannock JM, et al. Autoreactivity in naive human fetal B cells is associated with commensal bacteria recognition. Science 2020; 369 : 320–5. [Google Scholar]
  16. Bunker JJ, Bendelac A. IgA responses to microbiota. Immunity 2018 ; 49 : 211–224. [CrossRef] [PubMed] [Google Scholar]
  17. Lécuyer E, Rakotobe S, Lengliné-Garnier H, et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 2014 ; 40 : 608–620. [CrossRef] [PubMed] [Google Scholar]
  18. Schnupf P, Gaboriau-Routhiau V, Gros M, et al. Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature 2015 ; 520 : 99–103. [CrossRef] [PubMed] [Google Scholar]
  19. Bunker JJ, Drees C, Watson AR, et al. B cell superantigens in the human intestinal microbiota. Sci Transl Med 2019; 11 : eaau9356. [CrossRef] [PubMed] [Google Scholar]
  20. New JS, Dizon BLP, Fucile CF, et al. Neonatal exposure to commensal-bacteria-derived antigens directs polysaccharide-specific B-1 B cell repertoire development. Immunity 2020; 53 : 172–86.e6. [CrossRef] [PubMed] [Google Scholar]
  21. Planer JD, Peng Y, Kau AL, et al. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 2016 ; 534 : 263–266. [CrossRef] [PubMed] [Google Scholar]
  22. Cunningham-Rundles C.. Physiology of IgA and IgA deficiency. J Clin Immunol 2001 ; 21 : 303–309. [CrossRef] [PubMed] [Google Scholar]
  23. Fadlallah J, El Kafsi H, Sterlin D, et al. Microbial ecology perturbation in human IgA deficiency. Sci Transl Med 2018; 10 : eaan1217. [CrossRef] [PubMed] [Google Scholar]
  24. Chemouny JM, Gleeson PJ, Abbad L, et al. Modulation of the microbiota by oral antibiotics treats immunoglobulin A nephropathy in humanized mice. Nephrol Dial Transplant 2019 ; 34 : 1135–1144. [CrossRef] [Google Scholar]
  25. Oruc Z, Oblet C, Boumediene A, et al. IgA structure variations associate with immune stimulations and IgA mesangial deposition. J Am Soc Nephrol 2016 ; 27 : 2748–2761. [CrossRef] [Google Scholar]
  26. Wehbi B, Oblet C, Boyer F, et al. Mesangial deposition can strongly involve innate-like IgA molecules lacking affinity maturation. J Am Soc Nephrol 2019 ; 30 : 1238–1249. [CrossRef] [Google Scholar]
  27. Pascal V, Laffleur B, Debin A, et al. Anti-CD20 IgA can protect mice against lymphoma development: evaluation of the direct impact of IgA and cytotoxic effector recruitment on CD20 target cells. Haematologica 2012 ; 97 : 1686–1694. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.