Open Access
Med Sci (Paris)
Volume 36, Number 8-9, Août–Septembre 2020
Page(s) 753 - 762
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020130
Published online 21 August 2020
  1. Bourne RRA, Jonas JB, Bron AM, et al. Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe in 2015: magnitude, temporal trends and projections. Br J Ophthalmol 2018 ; 102 : 575–585. [CrossRef] [PubMed] [Google Scholar]
  2. Omri S, Omri B, Savoldelli M, et al. The outer limiting membrane (OLM) revisited : clinical implications. Clin Ophthalmol Auckl NZ 2010 ; 4 : 183–195. [Google Scholar]
  3. Daruich A, Matet A, Moulin A, et al. Mechanisms of macular edema : beyond the surface. Prog Retin Eye Res 2018 ; 63 : 20–68. [CrossRef] [PubMed] [Google Scholar]
  4. Omri S, Behar-Cohen F, Rothschild P-R, et al. PKCζ mediates breakdown of outer blood-retinal barriers in diabetic retinopathy. PLoS One 2013 ; 8 : e81600. [CrossRef] [PubMed] [Google Scholar]
  5. Rothschild PR, Salah S, Berdugo M, et al. ROCK-1 mediates diabetes-induced retinal pigment epithelial and endothelial cell blebbing : Contribution to diabetic retinopathy. Sci Rep 2017 ; 7 : 8834. [CrossRef] [PubMed] [Google Scholar]
  6. Kowalczuk L, Touchard E, Omri S, et al. Placental growth factor contributes to micro-vascular abnormalization and blood-retinal barrier breakdown in diabetic retinopathy. PLoS One 2011 ; 6 : e17462. [CrossRef] [PubMed] [Google Scholar]
  7. Miyamoto N, de Kozak Y, Jeanny JC, et al. Placental growth factor-1 and epithelial haemato-retinal barrier breakdown : potential implication in the pathogenesis of diabetic retinopathy. Diabetologia 2007 ; 50 : 461–470. [CrossRef] [PubMed] [Google Scholar]
  8. Omri S, Behar-Cohen F, de Kozak Y, et al. Microglia/macrophages migrate through retinal epithelium barrier by a transcellular route in diabetic retinopathy : role of PKCζ in the Goto Kakizaki rat model. Am J Pathol 2011 ; 179 : 942–953. [CrossRef] [PubMed] [Google Scholar]
  9. Couturier A, Bousquet E, Zhao M, et al. Anti-vascular endothelial growth factor acts on retinal microglia/macrophage activation in a rat model of ocular inflammation. Mol Vis 2014 ; 20 : 908–920. [PubMed] [Google Scholar]
  10. Bousquet E, Zhao M, Thillaye-Goldenberg B, et al. Choroidal mast cells in retinal pathology : a potential target for intervention. Am J Pathol 2015 ; 185 : 2083–2095. [CrossRef] [PubMed] [Google Scholar]
  11. Matet A, Savastano MC, Rispoli M, et al. En face optical coherence tomography of foveal microstructure in full-thickness macular hole : a model to study perifoveal Müller cells. Am J Ophthalmol 2015 ; 159 : 1142–1151 e3. [Google Scholar]
  12. Iliff JJ, Wang M, Liao Y, et al. A Paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012; 4 : 147ra111. [CrossRef] [PubMed] [Google Scholar]
  13. Nakada T, Kwee IL, Igarashi H, Suzuki Y. Aquaporin-4 functionality and Virchow-Robin space water dynamics: physiological model for neurovascular coupling and glymphatic flow. Int J Mol Sci 2017 ; 18 : [Google Scholar]
  14. Solomon SD, Lindsley K, Vedula SS, et al. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst Rev 2014 : CD005139. [PubMed] [Google Scholar]
  15. Virgili G, Parravano M, Evans JR, et al. Anti-vascular endothelial growth factor for diabetic macular oedema : a network meta-analysis. Cochrane Database Syst Rev 2017; 6 : CD007419. [PubMed] [Google Scholar]
  16. Sangroongruangsri S, Ratanapakorn T, Wu O, et al. Comparative efficacy of bevacizumab, ranibizumab, and aflibercept for treatment of macular edema secondary to retinal vein occlusion: a systematic review and network meta-analysis. Expert Rev Clin Pharmacol 2018 ; 11 : 903–916. [CrossRef] [PubMed] [Google Scholar]
  17. Freund KB, Korobelnik J-F, Devenyi R, et al. Treat-and-extend regimens with anti-VEGF agents in retinal diseases: a literature review and consensus recommendations. Retina Phila Pa 2015 ; 35 : 1489–1506. [CrossRef] [Google Scholar]
  18. Dugel PU, Jaffe GJ, Sallstig P, et al. Brolucizumab versus aflibercept in participants with neovascular age-related macular degeneration: a randomized trial. Ophthalmology 2017 ; 124 : 1296–1304. [Google Scholar]
  19. Stewart MW. Extended duration vascular endothelial growth factor iinhibition in the eye: failures, successes, and future possibilities. Pharmaceutics 2018; 10. [Google Scholar]
  20. Moore NA, Morral N, Ciulla TA, Bracha P. Gene therapy for inherited retinal and optic nerve degenerations. Expert Opin Biol Ther 2018 ; 18 : 37–49. [PubMed] [Google Scholar]
  21. Bordet T, Behar-Cohen F. Ocular gene therapies in clinical practice: viral vectors and nonviral alternatives. Drug Discov Today 2019 ; 24 : 1685–1693. [CrossRef] [PubMed] [Google Scholar]
  22. Stewart MW. Pharmacokinetics, pharmacodynamics and pre-clinical characteristics of ophthalmic drugs that bind VEGF. Expert Rev Clin Pharmacol 2014 ; 7 : 167–180. [CrossRef] [PubMed] [Google Scholar]
  23. Mordenti J, Cuthbertson RA, Ferrara N, et al. Comparisons of the intraocular tissue distribution, pharmacokinetics, and safety of 125I-labeled full-length and Fab antibodies in rhesus monkeys following intravitreal administration. Toxicol Pathol 1999 ; 27 : 536–544. [CrossRef] [PubMed] [Google Scholar]
  24. CATT Research Group, Martin DF, Maguire MG, Ying G, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med 2011 ; 364 : 1897–1908. [Google Scholar]
  25. Xu D, Dávila JP, Rahimi M, et al. Long-term progression of type 1 neovascularization in age-related macular degeneration using optical coherence tomography angiography. Am J Ophthalmol 2018 ; 187 : 10–20. [CrossRef] [PubMed] [Google Scholar]
  26. Fuh G, Wu P, Liang WC, et al. Structure-function studies of two synthetic anti-vascular endothelial growth factor Fabs and comparison with the Avastin Fab. J Biol Chem 2006 ; 281 : 6625–6631. [CrossRef] [PubMed] [Google Scholar]
  27. Behar-Cohen F, Dernigoghossian M, Andrieu-Soler C, et al. Potential antiedematous effects of intravitreous anti-VEGF, unrelated to VEGF neutralization. Drug Discov Today 2019. https://doi.org/10.1016/j.drudis.2019.05.034. [Google Scholar]
  28. Valamanesh F, Torriglia A, Savoldelli M, et al. Glucocorticoids induce retinal toxicity through mechanisms mainly associated with paraptosis. Mol Vis 2007 ; 13 : 1746–1757. [PubMed] [Google Scholar]
  29. Valamanesh F, Berdugo M, Sennlaub F, et al. Effects of triamcinolone acetonide on vessels of the posterior segment of the eye. Mol Vis 2009 ; 15 : 2634–2648. [PubMed] [Google Scholar]
  30. Torriglia A, Valamanesh F, Behar-Cohen F. On the retinal toxicity of intraocular glucocorticoids. Biochem Pharmacol 2010 ; 80 : 1878–1886. [CrossRef] [PubMed] [Google Scholar]
  31. Yang Y, Bailey C, Loewenstein A, Massin P. Intravitreal corticosteroids in diabetic macular edema: pharmacokinetic considerations. Retina Phila Pa 2015 ; 35 : 2440–2449. [CrossRef] [Google Scholar]
  32. Einmahl S, Savoldelli M, D’Hermies F, et al. Evaluation of a novel biomaterial in the suprachoroidal space of the rabbit eye. Invest Ophthalmol Vis Sci 2002 ; 43 : 1533–1539. [PubMed] [Google Scholar]
  33. Daruich A, Matet A, Behar-Cohen F. Sustained-release steroids for the treatment of diabetic macular edema. Curr Diab Rep 2015 ; 15 : 99. [CrossRef] [PubMed] [Google Scholar]
  34. Miyamoto N, Iossifov D, Metge F, Behar-Cohen F. Early effects of intravitreal triamcinolone on macular edema : mechanistic implication. Ophthalmology 2006 ; 113 : 2048–2053. [Google Scholar]
  35. Zhao M, Bousquet E, Valamanesh F, et al. Differential regulations of AQP4 and Kir4.1 by triamcinolone acetonide and dexamethasone in the healthy and inflamed retina. Invest Ophthalmol Vis Sci 2011 ; 52 : 6340–6347. [CrossRef] [PubMed] [Google Scholar]
  36. Zhao M, Valamanesh F, Celerier I, et al. The neuroretina is a novel mineralocorticoid target : aldosterone up-regulates ion and water channels in Müller glial cells. FASEB J 2010 ; 24 : 3405–3415. [CrossRef] [PubMed] [Google Scholar]
  37. Jaisser F, Farman N. Emerging roles of the mineralocorticoid receptor in pathology: toward New paradigms in clinical pharmacology. Pharmacol Rev 2016 ; 68 : 49–75. [PubMed] [Google Scholar]
  38. Canonica J, Mehanna C, Bonnard B, et al. Effect of acute and chronic aldosterone exposure on the retinal pigment epithelium-choroid complex in rodents. Exp Eye Res 2019 ; 187 : 107747. [CrossRef] [PubMed] [Google Scholar]
  39. Zhao M, Célérier I, Bousquet E, et al. Mineralocorticoid receptor is involved in rat and human ocular chorioretinopathy. J Clin Invest 2012 ; 122 : 2672–2679. [CrossRef] [PubMed] [Google Scholar]
  40. Allingham MJ, Tserentsoodol N, Saloupis P, et al. Aldosterone exposure causes increased retinal edema and severe retinopathy following laser-induced retinal vein occlusion in mice. Invest Ophthalmol Vis Sci 2018 ; 59 : 3355–3365. [CrossRef] [PubMed] [Google Scholar]
  41. Wilkinson-Berka JL, Tan G, Jaworski K, Miller AG. Identification of a retinal aldosterone system and the protective effects of mineralocorticoid receptor antagonism on retinal vascular pathology. Circ Res 2009 ; 104 : 124–133. [PubMed] [Google Scholar]
  42. Wilkinson-Berka JL, Behar-Cohen F. Angiotensin II and aldosterone: co-conspirators in ocular physiology and disease. Exp Eye Res 2020 : 108005. [CrossRef] [PubMed] [Google Scholar]
  43. Daruich A, Matet A, Dirani A, et al. Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. Prog Retin Eye Res 2015 ; 48 : 82–118. [CrossRef] [PubMed] [Google Scholar]
  44. Zhao M, Mantel I, Gelize E, et al. Mineralocorticoid receptor antagonism limits experimental choroidal neovascularization and structural changes associated with neovascular age-related macular degeneration. Nat Commun 2019 ; 10 : 369. [PubMed] [Google Scholar]
  45. Behar-Cohen F.. Towards an optimized use of ocular corticosteroids: EURETINA award lecture 2017. Ophthalmologica 2018 ; 240 : 111–119. [CrossRef] [PubMed] [Google Scholar]
  46. Behar-Cohen F, Gelizé E, Jonet L, Lassiaz P. Anatomie de la rétine. Med Sci (Paris) 2020; 36 : 594–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Thomas JL, Jacob L, Boisserand L. Système lymphatique et cerveau. Med Sci (Paris) 2019 ; 35 : 55–61. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.