Open Access
Issue
Med Sci (Paris)
Volume 36, Number 6-7, Juin–Juillet 2020
Page(s) 581 - 591
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020112
Published online 02 July 2020
  1. Angelaki DE, Cullen KE. Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 2008 ; 31 : 125–150. [CrossRef] [PubMed] [Google Scholar]
  2. Lopez C.. The vestibular system: balancing more than just the body. Curr Opin Neurol 2016 ; 29 : 74–83. [CrossRef] [PubMed] [Google Scholar]
  3. Brichta AM, Goldberg JM. Responses to efferent activation and excitatory response-intensity relations of turtle posterior-crista afferents. J Neurophysiol 2000 ; 83 : 1224–1242. [Google Scholar]
  4. Balaban CD. Vestibular autonomic regulation (including motion sickness and the mechanism of vomiting). Curr Opin Neurol 1999 ; 12 : 29–33. [CrossRef] [PubMed] [Google Scholar]
  5. Lacour M, Tighilet B. Plastic events in the vestibular nuclei during vestibular compensation: the brain orchestration of a deafferentation code. Restor Neurol Neurosci 2010 ; 28 : 19–35. [Google Scholar]
  6. Strupp M, Arbusow V. Acute vestibulopathy. Curr Opin Neurol 2001 ; 14 : 11–20. [CrossRef] [PubMed] [Google Scholar]
  7. Lacour M, Helmchen C, Vidal PP. Vestibular compensation: the neuro-otologist’s best friend. J Neurol 2016; 263 : 54–64. [Google Scholar]
  8. Darlington CL, Smith PF. Molecular mechanisms of recovery from vestibular damage in mammals: recent advances. Prog Neurobiol 2000 ; 62 : 313–325. [Google Scholar]
  9. Smith PF, Curthoys IS. Mechanisms of recovery following unilateral labyrinthectomy: a review. Brain Res Rev 1989 ; 14 : 155–180. [CrossRef] [PubMed] [Google Scholar]
  10. Tighilet B, Chabbert C. Adult neurogenesis promotes balance recovery after vestibular loss. Prog Neurobiol 2019 ; 174 : 28–35. [Google Scholar]
  11. Dutheil S, Watabe I, Sadlaoud K, et al. BDNF signaling promotes vestibular compensation by increasing neurogenesis and remodeling the expression of potassium-chloride cotransporter KCC2 and GABAA receptor in the vestibular nuclei. J Neurosci 2016 ; 36 : 6199–6212. [CrossRef] [PubMed] [Google Scholar]
  12. Tighilet B, Leonard J, Mourre C, et al. Apamin treatment accelerates equilibrium recovery and gaze stabilization in unilateral vestibular neurectomized cats: cellular and behavioral aspects. Neuropharmacology 2019 ; 144 : 133–142. [CrossRef] [PubMed] [Google Scholar]
  13. Liberge M, Manrique C, Bernard-Demanze L, et al. Changes in TNFα, NFκB and MnSOD protein in the vestibular nuclei after unilateral vestibular deafferentation. J Neuroinflammation 2010 ; 7 : 91. [CrossRef] [PubMed] [Google Scholar]
  14. Dutheil S, Lacour M, Tighilet B. Neurogenic potential of the vestibular nuclei and behavioural recovery time course in the adult cat are governed by the nature of the vestibular damage. PLoS One 2011 ; 6 : e22262. [CrossRef] [PubMed] [Google Scholar]
  15. Tighilet B, Manrique C, Lacour M. Stress axis plasticity during vestibular compensation in the adult cat. Neuroscience 2009 ; 160 : 716–730. [Google Scholar]
  16. Li H, Dokas LA, Godfrey DA, et al. Remodeling of synaptic connections in the deafferented vestibular nuclear complex. J Vestib Res 2002 ; 12 : 167–183. [PubMed] [Google Scholar]
  17. Raymond J, Ez-Zaher L, Demêmes D, et al. Quantification of synaptic density changes in the medial vestibular nucleus of the cat following vestibular neurectomy. Restor Neurol Neurosci 1991 ; 3 : 197–203. [Google Scholar]
  18. Tighilet B, Brezun JM, Dit Duflo Sylvie G, et al. New neurons in the vestibular nuclei complex after unilateral vestibular neurectomy in the adult cat. Eur J Neurosci 2007 ; 25 : 47–58. [Google Scholar]
  19. Dutheil S, Brezun JM, Leonard J, et al. Neurogenesis and astrogenesis contribution to recovery of vestibular functions in the adult cat following unilateral vestibular neurectomy: cellular and behavioral evidence. Neuroscience 2009 ; 164 : 1444–1456. [Google Scholar]
  20. Gage FH. Mammalian neural stem cells. Science 2000 ; 287 : 1433–1438. [Google Scholar]
  21. Hayashi Y, Jinnou H, Sawamoto K, et al. Adult neurogenesis and its role in brain injury and psychiatric diseases. J Neurochem 2018 ; 147 : 584–594. [CrossRef] [PubMed] [Google Scholar]
  22. Kuhn HG, Eisch AJ, Spalding K, et al. Detection and phenotypic characterization of adult neurogenesis. Cold Spring Harb Perspect Biol 2016 ; 8 : a025981. [CrossRef] [PubMed] [Google Scholar]
  23. MacKinnon CD. Sensorimotor anatomy of gait, balance, and falls. Handb Clin Neurol 2018 ; 159 : 3–26. [Google Scholar]
  24. Ris L, de Waele C, Serafin M, et al. Neuronal activity in the ipsilateral vestibular nucleus following unilateral labyrinthectomy in the alert guinea pig. J Neurophysiol 1995 ; 74 : 2087–2099. [PubMed] [Google Scholar]
  25. Zennou-Azogui Y, Borel L, Lacour M, et al. Recovery of head postural control following unilateral vestibular neurectomy in the cat: neck muscle activity and neuronal correlates in Deiters’ nuclei. Acta OtoLaryngol 1993 ; 113 : suppl 5–19. [Google Scholar]
  26. Curthoys IS. Vestibular compensation and substitution. Curr Opin Neurol 2000 ; 13 : 27. [CrossRef] [PubMed] [Google Scholar]
  27. Boulenguez P, Liabeuf S, Bos R, et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med 2010 ; 16 : 302–307. [CrossRef] [PubMed] [Google Scholar]
  28. Dutheil S, Escoffier G, Gharbi A, et al. GABAA receptor agonist and antagonist alter vestibular compensation and different steps of reactive neurogenesis in deafferented vestibular nuclei of adult cats. J Neurosci 2013 ; 33 : 15555–15566. [CrossRef] [PubMed] [Google Scholar]
  29. Rocha SM, Saraiva T, Cristóvão AC, et al. Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation. J Neuroinflammation 2016 ; 13 : 137. [CrossRef] [PubMed] [Google Scholar]
  30. Tighilet B, Trottier S, Mourre C, et al. Changes in the histaminergic system during vestibular compensation in the cat: Histamine and vestibular compensation. J Physiol 2006 ; 573 : 723–739. [CrossRef] [PubMed] [Google Scholar]
  31. Guilloux J-P, Samuels BA, Mendez-David I, et al. S 38093, a histamine H3 antagonist/inverse agonist, promotes hippocampal neurogenesis and improves context discrimination task in aged mice. Sci Rep 2017 ; 7 : 42946. [CrossRef] [PubMed] [Google Scholar]
  32. Eiriz MF, Valero J, Malva JO, et al. New insights into the role of histamine in subventricular zone-olfactory bulb neurogenesis. Front Neurosci 2014 ; 8 : 142. [Google Scholar]
  33. Whitney NP, Eidem TM, Peng H, et al. Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J Neurochem 2009 ; 108 : 1343–1359. [CrossRef] [PubMed] [Google Scholar]
  34. Bellot-Saez A, Kékesi O, Morley JW, et al. Astrocytic modulation of neuronal excitability through K+ spatial buffering. Neurosci Biobehav Rev 2017 ; 77 : 87–97. [CrossRef] [PubMed] [Google Scholar]
  35. Ferrini F, De Koninck Y. Microglia control neuronal network excitability via BDNF signalling. Neural Plast 2013 ; 2013 : 1–11. [Google Scholar]
  36. Falk S, Götz M. Glial control of neurogenesis. Curr Opin Neurobiol 2017 ; 47 : 188–195. [CrossRef] [PubMed] [Google Scholar]
  37. Káradóttir RT, Kuo CT. Neuronal activity-dependent control of postnatal neurogenesis and gliogenesis. Annu Rev Neurosci 2018 ; 41 : 139–161. [CrossRef] [PubMed] [Google Scholar]
  38. Lacour M, Roll JP, Appaix M. Modifications and development of spinal reflexes in the alert baboon (Papio papio) following an unilateral vestibular neurotomy. Brain Res 1976 ; 113 : 255–269. [CrossRef] [PubMed] [Google Scholar]
  39. Whitlock JR, Heynen AJ, Shuler MG, et al. Learning induces long-term potentiation in the hippocampus. Science 2006 ; 313 : 1093–1097. [Google Scholar]
  40. Racine RJ, Wilson DA, Gingell R, et al. Long-term potentiation in the interpositus and vestibular nuclei in the rat. Exp Brain Res 1986 ; 63 : 158–162. [CrossRef] [PubMed] [Google Scholar]
  41. Pettorossi VE, Dutia M, Frondaroli A, et al. Long-term potentiation and depression after unilateral labyrinthectomy in the medial vestibular nucleus of rats. Acta Otolaryngol 2003 ; 123 : 182–186. [CrossRef] [PubMed] [Google Scholar]
  42. Smith PF. Vestibular-hippocampal interactions. Hippocampus 1997 ; 7 : 465–471. [Google Scholar]
  43. Vessal M, Darian-Smith C. Adult neurogenesis occurs in primate sensorimotor cortex following cervical dorsal rhizotomy. J Neurosci 2010 ; 30 : 8613–8623. [CrossRef] [PubMed] [Google Scholar]
  44. Farbman AI. Injury-stimulated neurogenesis in sensory systems. Adv Neurol 1997 ; 72 : 157–161. [Google Scholar]
  45. Zheng Y, Begum S, Zhang C, et al. Increased BrdU incorporation reflecting DNA repair, neuronal de-differentiation or possible neurogenesis in the adult cochlear nucleus following bilateral cochlear lesions in the rat. Exp Brain Res 2011 ; 210 : 477–487. [CrossRef] [PubMed] [Google Scholar]
  46. Zheng Y, Smithies H, Aitken P, et al. Cell proliferation in the cochlear nucleus following acoustic trauma in rat. Neuroscience 2015 ; 303 : 524–534. [Google Scholar]
  47. Tighilet B, Dutheil S, Siponen MI, et al. Reactive neurogenesis and down-regulation of the potassium-chloride cotransporter KCC2 in the cochlear nuclei after cochlear deafferentation. Front Pharmacol 2016 ; 7 : 281. [CrossRef] [PubMed] [Google Scholar]
  48. Silverstein H, Lewis WB, Jackson LE, et al. Changing trends in the surgical treatment of Ménière’s disease: results of a 10-year survey. Ear Nose Throat J 2003 ; 82 : 185–7 191–194. [Google Scholar]
  49. Pareschi R, Destito D, Falco Raucci A, et al. Posterior fossa vestibular neurotomy as primary surgical treatment of Menière’s disease: a re-evaluation. J Laryngol Otol 2002 ; 116 : 593–596. [CrossRef] [PubMed] [Google Scholar]
  50. Diaz RC, LaRouere MJ, Bojrab DI, et al. Quality-of-life assessment of Ménière’s disease patients after surgical labyrinthectomy. Otol Neurotol 2007 ; 28 : 74–86. [Google Scholar]
  51. Zalewski CK. Aging of the human vestibular system. Semin Hear 2015 ; 36 : 175–196. [Google Scholar]
  52. Rosenhall U.. Degenerative patterns in the aging human vestibular neuro-epithelia. Acta Otolaryngol 1973 ; 76 : 208–220. [CrossRef] [PubMed] [Google Scholar]
  53. Burns JC, Stone JS. Development and regeneration of vestibular hair cells in mammals. Semin Cell Dev Biol 2017 ; 65 : 96–105. [CrossRef] [PubMed] [Google Scholar]
  54. Czajkowski A, Mounier A, Delacroix L, et al. Pluripotent stem cell-derived cochlear cells: a challenge in constant progress. Cell Mol Life Sci 2019 ; 76 : 627–635. [CrossRef] [PubMed] [Google Scholar]
  55. Lenarz T. Cochlear implant: state of the art. GMS Curr Top Otorhinolaryngol Head Neck Surg 2017; 19 : Doc04. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.