Organoïdes
Open Access
Issue
Med Sci (Paris)
Volume 36, Number 4, Avril 2020
Organoïdes
Page(s) 382 - 388
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020056
Published online 01 May 2020
  1. GBD 2017. Causes of death collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of disease study 2017. Lancet Lond Engl 2018; 392 : 1736–88. [CrossRef] [Google Scholar]
  2. Ekelund L, Arvidson G, Emanuelsson H, et al. Effect of cortisol on human fetal lung in organ culture: a biochemical, electron-microscopic and autoradiographic study. Cell Tissue Res 1975 ; 163 : 263–272. [Google Scholar]
  3. Zimmermann B.. Lung organoid culture. Differ Res Biol Divers 1987 ; 36 : 86–109. [CrossRef] [Google Scholar]
  4. Nadkarni RR, Abed S, Draper JS. Organoids as a model system for studying human lung development and disease. Biochem Biophys Res Commun 2016 ; 473 : 675–682. [Google Scholar]
  5. Plasschaert LW, Žilionis R, Choo-Wing R, et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 2018 ; 560 : 377–381. [Google Scholar]
  6. Dye BR, Miller AJ, Spence JR. How to grow a lung: applying principles of developmental biology to generate lung lineages from human pluripotent stem cells. Curr Pathobiol Rep 2016 ; 4 : 47–57. [CrossRef] [PubMed] [Google Scholar]
  7. Ahmed E, Sansac C, Assou S, et al. Lung development, regeneration and plasticity: from disease physiopathology to drug design using induced pluripotent stem cells. Pharmacol Ther 2018 ; 183 : 58–77. [PubMed] [Google Scholar]
  8. Morrisey EE, Hogan BLM. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 2010 ; 18 : 8–23. [CrossRef] [PubMed] [Google Scholar]
  9. Hardin-Pouzet H, Morosan S. Organismes-modèles et réglementation de la recherche animale. Med/Sci (Paris) 2019 ; 35 : 153–156. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Boers JE, Ambergen AW, Thunnissen FB. Number and proliferation of clara cells in normal human airway epithelium. Am J Respir Crit Care Med 1999 ; 159 : 1585–1591. [CrossRef] [PubMed] [Google Scholar]
  11. Rock JR, Randell SH, Hogan BLM. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 2010 ; 3 : 545–556. [Google Scholar]
  12. Jobe AH. Animal models, learning lessons to prevent and treat neonatal chronic lung disease. Front Med 2015 ; 2 : 49. [Google Scholar]
  13. Gras D, Petit A, Charriot J, et al. Epithelial ciliated beating cells essential for ex vivo ALI culture growth. BMC Pulm Med 2017 ; 17 : 80. [CrossRef] [PubMed] [Google Scholar]
  14. Kast JI, McFarlane AJ, Głobin΄ska A, et al. Respiratory syncytial virus infection influences tight junction integrity. Clin Exp Immunol 2017 ; 190 : 351–359. [Google Scholar]
  15. Rayner RE, Makena P, Prasad GL, et al. Optimization of normal human bronchial epithelial (NHBE) cell 3D cultures for in vitro lung model studies. Sci Rep 2019 ; 9 : 500. [CrossRef] [PubMed] [Google Scholar]
  16. Gras D, Martinez-Anton A, Bourdin A, et al. Human bronchial epithelium orchestrates dendritic cell activation in severe asthma. Eur Respir J 2017 ; 49. [Google Scholar]
  17. Gao X, Bali AS, Randell SH, et al. GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells. J. Cell Biol 2015 ; 211 : 669–682. [CrossRef] [PubMed] [Google Scholar]
  18. Rock JR, Gao X, Xue Y, et al. Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell 2011 ; 8 : 639–648. [Google Scholar]
  19. Barkauskas CE, Cronce MJ, Rackley CR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 2013 ; 123 : 3025–3036. [CrossRef] [PubMed] [Google Scholar]
  20. Franzdóttir SR, Axelsson IT, Arason AJ, et al. Airway branching morphogenesis in three dimensional culture. Respir Res 2010 ; 11 : 162. [CrossRef] [PubMed] [Google Scholar]
  21. Danahay H, Pessotti AD, Coote J, et al. Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep 2015 ; 10 : 239–252. [CrossRef] [PubMed] [Google Scholar]
  22. Rosen C, Shezen E, Aronovich A, et al. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice. Nat Med 2015 ; 21 : 869–879. [CrossRef] [PubMed] [Google Scholar]
  23. Sucre JMS, Vijayaraj P, Aros CJ, et al. Posttranslational modification of β-catenin is associated with pathogenic fibroblastic changes in bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017 ; 312 : L186–L195. [CrossRef] [PubMed] [Google Scholar]
  24. Huh D, Matthews BD, Mammoto A, et al. Reconstituting organ-level lung functions on a chip. Science 2010 ; 328 : 1662–1668. [Google Scholar]
  25. De Vos J, Bouckenheimer J, Sansac C, et al. Human induced pluripotent stem cells: a disruptive innovation. Curr Res Transl Med 2016 ; 64 : 91–96. [PubMed] [Google Scholar]
  26. Firth AL, Dargitz CT, Qualls SJ, et al. Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc Natl Acad Sci USA 2014 ; 111 : E1723–E1730. [CrossRef] [Google Scholar]
  27. Huang SXL, Green MD, de Carvalho AT, et al. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nat Protoc 2015 ; 10 : 413–425. [CrossRef] [PubMed] [Google Scholar]
  28. Wong AP, Bear CE, Chin S, et al. Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat Biotechnol 2012 ; 30 : 876–882. [CrossRef] [PubMed] [Google Scholar]
  29. Gotoh S, Ito I, Nagasaki T, et al. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep 2014 ; 3 : 394–403. [CrossRef] [PubMed] [Google Scholar]
  30. Konishi S, Gotoh S, Tateishi K, et al. Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Rep 2016 ; 6 : 18–25. [CrossRef] [Google Scholar]
  31. McCauley KB, Hawkins F, Kotton DN. Derivation of epithelial-only airway organoids from human pluripotent stem cells. Curr Protoc Stem Cell Biol 2018 ; 45 : e51. [CrossRef] [PubMed] [Google Scholar]
  32. Yamamoto Y, Gotoh S, Korogi Y, et al. Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat Methods 2017 ; 14 : 1097–1106. [PubMed] [Google Scholar]
  33. Chen YW, Huang SX, de Carvalho ALRT, et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol 2017 ; 19 : 542–549. [CrossRef] [PubMed] [Google Scholar]
  34. Dye BR, Dedhia PH, Miller AJ, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. eLife 2016; 5. [Google Scholar]
  35. Miller AJ, Hill DR, Nagy MS, et al. In vitro induction and in vivo engraftment of lung bud tip progenitor cells derived from human pluripotent stem cells. Stem Cell Rep 2018 ; 10 : 101–119. [CrossRef] [Google Scholar]
  36. Dye BR, Hill DR, Ferguson MAH, et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 2015; 4. [Google Scholar]
  37. Ronaldson-Bouchard K, Ma SP, Yeager K, et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 2018 ; 556 : 239–243. [Google Scholar]
  38. McCauley KB, Hawkins F, Serra M, et al. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell 2017 ; 20 : 844–57 e6. [Google Scholar]
  39. Strikoudis A, Cies΄lak A, Loffredo L, et al. Modeling of Fibrotic Lung Disease Using 3D Organoids Derived from Human Pluripotent Stem Cells. Cell Rep 2019 ; 27 : 3709–23 e5. [Google Scholar]
  40. Mianné J, Ahmed E, Bourguignon C, et al. Induced pluripotent stem cells for primary ciliary dyskinesia modeling and personalized medicine. Am. J Respir Cell Mol Biol 2018 ; 59 : 672–683. [CrossRef] [PubMed] [Google Scholar]
  41. Porotto M, Ferren M, Chen YW, et al. Authentic modeling of human respiratory virus infection in human pluripotent stem cell-derived lung organoids. mBio 2019; 10. [Google Scholar]
  42. Gilpin SE, Wagner DE. Acellular human lung scaffolds to model lung disease and tissue regeneration. Eur Respir Rev 2018 ; 27. [Google Scholar]
  43. Peng T, Tian Y, Boogerd CJ, et al. Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor. Nature 2013 ; 500 : 589–592. [Google Scholar]
  44. Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 2013 ; 499 : 481–484. [Google Scholar]
  45. Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 2019 ; 364 : 458–464. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.