Open Access
Med Sci (Paris)
Volume 36, Number 3, Mars 2020
Page(s) 203 - 206
Section Le Magazine
Published online 31 March 2020
  1. Raices M, D’Angelo MA. Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat Rev Mol Cell Biol 2012 ; 13 : 687–699. [CrossRef] [PubMed] [Google Scholar]
  2. Chook YM, Suel KE. Nuclear import by karyopherin-betas: recognition and inhibition. Biochim Biophys Acta 2011 ; 1813 : 1593–1606. [CrossRef] [PubMed] [Google Scholar]
  3. Mor A, White MA, Fontoura BM. Nuclear trafficking in health and disease. Curr Opin Cell Biol 2014 ; 28 : 28–35. [CrossRef] [PubMed] [Google Scholar]
  4. Cohen S, Au S, Pante N. How viruses access the nucleus. Biochim Biophys Acta 2011 ; 1813 : 1634–1645. [CrossRef] [PubMed] [Google Scholar]
  5. Kobiler O, Drayman N, Butin-Israeli V, Oppenheim A. Virus strategies for passing the nuclear envelope barrier. Nucleus 2012 ; 3 : 526–539. [CrossRef] [PubMed] [Google Scholar]
  6. Bukrinsky MI, Sharova N, Dempsey MP, et al. Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci USA 1992 ; 89 : 6580–6584. [CrossRef] [Google Scholar]
  7. Arhel N, Genovesio A, Kim KA, et al. Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat Methods 2006 ; 3 : 817–824. [PubMed] [Google Scholar]
  8. Arhel NJ, Souquere-Besse S, Munier S, et al. HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore. EMBO J 2007 ; 26 : 3025–3037. [CrossRef] [PubMed] [Google Scholar]
  9. Hilditch L, Towers GJ. A model for cofactor use during HIV-1 reverse transcription and nuclear entry. Curr Opin Virol 2014 ; 4 : 32–36. [CrossRef] [PubMed] [Google Scholar]
  10. Matreyek KA, Engelman A. Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses 2013 ; 5 : 2483–2511. [CrossRef] [PubMed] [Google Scholar]
  11. Bhargava A, Lahaye X, Manel N. Let me. In: Control of HIV nuclear entry at the nuclear envelope. Cytokine Growth Factor Rev 2018; 40 : 59–67. [CrossRef] [Google Scholar]
  12. Levin A, Loyter A, Bukrinsky M. Strategies to inhibit viral protein nuclear import: HIV-1 as a target. Biochim Biophys Acta 2011 ; 1813 : 1646–1653. [CrossRef] [PubMed] [Google Scholar]
  13. Achuthan V, Perreira JM, Ahn JJ, et al. Capsid-CPSF6 interaction: master regulator of nuclear HIV-1 positioning and integration. J Life Sci 2019 ; 1 : 39–45. [Google Scholar]
  14. Campbell EM, Hope TJ. HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat Rev Microbiol 2015 ; 13 : 471–483. [CrossRef] [PubMed] [Google Scholar]
  15. Fernandez J, Machado AK, Lyonnais S, et al. Transportin-1 binds to the HIV-1 capsid via a nuclear localization signal and triggers uncoating. Nat Microbiol 2019 ; 4 : 1840–1850. [CrossRef] [PubMed] [Google Scholar]
  16. Hindley CE, Lawrence FJ, Matthews DA. A role for transportin in the nuclear import of adenovirus core proteins and DNA. Traffic 2007 ; 8 : 1313–1322. [CrossRef] [PubMed] [Google Scholar]
  17. Miyake Y, Keusch JJ, Decamps L, et al. Influenza virus uses transportin 1 for vRNP debundling during cell entry. Nat Microbiol 2019 ; 4 : 578–586. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.