Open Access
Med Sci (Paris)
Volume 36, Number 2, Février 2020
Page(s) 130 - 136
Section M/S Revues
Published online 04 March 2020
  1. Morozova S, Suc-Royer I, Auwerx J. Modulateurs du métabolisme du cholestérol et avenir du traitement de l’athérosclérose. Med Sci (Paris) 2004 ; 20 : 685–690. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Goldstein JL, DeBose-Boyd RA, Brown MS. Protein sensors for membrane sterols. Cell 2006 ; 124 : 35–46. [CrossRef] [PubMed] [Google Scholar]
  3. Bigay J, Antonny B. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev Cell 2012 ; 23 : 886–895. [CrossRef] [PubMed] [Google Scholar]
  4. Luo J, Jiang LY, Yang H, et al. Intracellular Cholesterol Transport by Sterol Transfer Proteins at Membrane Contact Sites. Trends Biochem Sci 2019 ; 44 : 273–292. [CrossRef] [PubMed] [Google Scholar]
  5. Di Mattia T, Tomasetto C, Alpy F. MOSPD2, un connecteur inter-organites. Med Sci (Paris) 2019 ; 35 : 23–25. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Levine TP. Short-range intracellular trafficking of small molecules across endoplasmic reticulum junctions. Trends Cell Biol 2004 ; 14 : 483–490. [Google Scholar]
  7. Loewen CJR, Roy A, Levine TP. A conserved RE targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J 2003 ; 22 : 2025–2035. [CrossRef] [PubMed] [Google Scholar]
  8. Mesmin B, Bigay J, Moser von Filseck J, et al. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the RE-Golgi tether OSBP. Cell 2013 ; 155 : 830–843. [CrossRef] [PubMed] [Google Scholar]
  9. Mesmin B, Bigay J, Polidori J, et al. Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP. EMBO J 2017 ; 36 : 3156–3174. [PubMed] [Google Scholar]
  10. de Saint-Jean M, Delfosse V, Douguet D, et al. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J Cell Biol 2011 ; 195 : 965–978. [CrossRef] [PubMed] [Google Scholar]
  11. Moser von Filseck J, Vanni S, Mesmin B, et al. A phosphatidylinositol-4-phosphate powered exchange mechanism to create a lipid gradient between membranes. Nat Commun 2015 ; 6 : 6671. [PubMed] [Google Scholar]
  12. Burgett AWG, Poulsen TB, Wangkanont K, et al. Natural products reveal cancer cell dependence on oxysterol-binding proteins. Nat Chem Biol 2011 ; 7 : 639–647. [Google Scholar]
  13. Antonny B, Bigay J, Mesmin B. The oxysterol-binding protein cycle: burning off PI(4)P to transport cholesterol. Annu Rev Biochem 2018 ; 87 : 809–837. [CrossRef] [PubMed] [Google Scholar]
  14. Rakoto-Andrianarivelo M, Jegouic S, Bessaud M, et al. Poliovirus et entérovirus C, même espèce, même tribu virale. Med Sci (Paris) 2008 ; 24 : 452–453. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  15. Van der Schaar HM, Dorobantu CM, Albulescu L, et al. Fat(al) attraction: picornaviruses usurp lipid transfer at membrane contact sites to create replication organelles. Trends Microbiol 2016 ; 24 : 535–546. [Google Scholar]
  16. Roulin PS, Lötzerich M, Torta F, et al. Rhinovirus uses a phosphatidylinositol 4-phosphate/cholesterol counter-current for the formation of replication compartments at the RE-Golgi interface. Cell Host Microbe 2014 ; 16 : 677–690. [CrossRef] [PubMed] [Google Scholar]
  17. Arita M. Phosphatidylinositol-4 kinase III beta and oxysterol-binding protein accumulate unesterified cholesterol on poliovirus-induced membrane structure. Microbiol Immunol 2014 ; 58 : 239–256. [CrossRef] [PubMed] [Google Scholar]
  18. Strating JRPM, van der Linden L, Albulescu L, et al. Itraconazole inhibits enterovirus replication by targeting the oxysterol-binding protein. Cell Rep 2015 ; 10 : 600–615. [CrossRef] [PubMed] [Google Scholar]
  19. Albulescu L, Bigay J, Biswas B, et al. Uncovering oxysterol-binding protein (OSBP) as a target of the anti-enteroviral compound TTP-8307. Antiviral Res 2017 ; 140 : 37–44. [CrossRef] [PubMed] [Google Scholar]
  20. Arita M, Bigay J. Poliovirus evolution toward Independence from the phosphatidylinositol-4 kinase III β/oxysterol-binding protein family I pathway. ACS Infect Dis 2019 ; 5 : 962–973. [Google Scholar]
  21. Moser von Filseck J Cˇ opicˇ A, Delfosse V, et al. Intracellular transport. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science 2015 ; 349 : 432–436. [Google Scholar]
  22. Chung J, Torta F, Masai K, et al. Intracellular transport. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated RE-plasma membrane contacts. Science 2015 ; 349 : 428–432. [Google Scholar]
  23. Venditti R, Rega LR, Masone MC, et al. Molecular determinants of RE-Golgi contacts identified through a new FRET-FLIM system. J Cell Biol 2019 ; 218 : 1055–1065. [CrossRef] [PubMed] [Google Scholar]
  24. Ghai R, Du X, Wang H, et al. ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and regulate its level at the plasma membrane. Nat Commun 2017 ; 8 : 757. [PubMed] [Google Scholar]
  25. Wang H, Ma Q, Qi Y, et al. ORP2 delivers cholesterol to the plasma membrane in exchange for phosphatidylinositol 4, 5-bisphosphate (PI(4,5)P2). Mol Cell 2018 ; 73 : 458–473. [CrossRef] [PubMed] [Google Scholar]
  26. Dong J, Du X, Wang H, et al. Allosteric enhancement of ORP1-mediated cholesterol transport by PI(4,5)P2/PI(3,4)P2. Nat Commun 2019 ; 10 : 829. [PubMed] [Google Scholar]
  27. Sobajima T, Yoshimura S-I, Maeda T, et al. The Rab11-binding protein RELCH/KIAA1468 controls intracellular cholesterol distribution. J Cell Biol 2018 ; 217 : 1777–1796. [CrossRef] [PubMed] [Google Scholar]
  28. Hanada K. Lipid transfer proteins rectify inter-organelle flux and accurately deliver lipids at membrane contact sites. J Lipid Res 2018 ; 59 : 1341–1366. [CrossRef] [PubMed] [Google Scholar]
  29. Saheki Y, Bian X, Schauder CM, et al. Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat Cell Biol 2016 ; 18 : 504–515. [CrossRef] [PubMed] [Google Scholar]
  30. Kim YJ, Guzman-Hernandez ML, Wisniewski E, et al. Phosphatidylinositol-phosphatidic acid exchange by Nir2 at RE-PM contact sites maintains phosphoinositide signaling competence. Dev Cell 2015 ; 33 : 549–561. [CrossRef] [PubMed] [Google Scholar]
  31. Chang CL, Liou J. Phosphatidylinositol 4,5-bisphosphate homeostasis regulated by Nir2 and Nir3 proteins at endoplasmic reticulum-plasma membrane junctions. J Biol Chem 2015 ; 290 : 14289–14301. [CrossRef] [PubMed] [Google Scholar]
  32. Lim C-Y, Davis OB, Shin HR, et al. RE-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C. Nat Cell Biol 2019 ; 21 : 1206–1218. [CrossRef] [PubMed] [Google Scholar]
  33. Rocha N, Kuijl C, van der Kant R, et al. Cholesterol sensor ORP1L contacts the RE protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J Cell Biol 2009 ; 185 : 1209–1225. [CrossRef] [PubMed] [Google Scholar]
  34. Wang PY, Weng J, Anderson RGW. OSBP is a cholesterol-regulated scaffolding protein in control of ERK 1/2 activation. Science 2005 ; 307 : 1472–1476. [Google Scholar]
  35. Romeo GR, Kazlauskas A. Oxysterol and diabetes activate STAT3 and control endothelial expression of profilin-1 via OSBP1. J Biol Chem 2008 ; 283 : 9595–9605. [CrossRef] [PubMed] [Google Scholar]
  36. Amako Y, Syed GH, Siddiqui A. Protein kinase D negatively regulates hepatitis C virus secretion through phosphorylation of oxysterol-binding protein and ceramide transfer protein. J Biol Chem 2011 ; 286 : 11265–11274. [CrossRef] [PubMed] [Google Scholar]
  37. Nhek S, Ngo M, Yang X, et al. Regulation of oxysterol-binding protein Golgi localization through protein kinase D-mediated phosphorylation. Mol Biol Cell 2010 ; 21 : 2327–2337. [CrossRef] [PubMed] [Google Scholar]
  38. Weber-Boyvat M, Kentala H, Peränen J, et al. Ligand-dependent localization and function of ORP-VAP complexes at membrane contact sites. Cell Mol Life Sci 2015 ; 72 : 1967–1987. [CrossRef] [PubMed] [Google Scholar]
  39. Lessmann E, Ngo M, Leitges M, et al. Oxysterol-binding protein-related protein (ORP) 9 is a PDK-2 substrate and regulates Akt phosphorylation. Cell Signal 2007 ; 19 : 384–392. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.