Open Access
Med Sci (Paris)
Volume 35, Number 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1001 - 1004
Section Anticorps nus et monospécifiques en cancérologie : quels autres progrès depuis 2009 ?
Published online 06 January 2020
  1. Barlogie B, Mitchell A, van Rhee F, et al. Curing myeloma at last: defining criteria and providing the evidence. Blood 2014 ; 124: 3043–3051. [Google Scholar]
  2. van de Donk NW, Moreau P, Plesner T, et al. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma. Blood 2016 ; 127: 681–695. [Google Scholar]
  3. van de Donk N, Richardson PG, Malavasi F. CD38 antibodies in multiple myeloma: back to the future. Blood 2018 ; 131: 13–29. [Google Scholar]
  4. Munoz P, Mittelbrunn M, de la Fuente H, et al. Antigen-induced clustering of surface CD38 and recruitment of intracellular CD38 to the immunologic synapse. Blood 2008 ; 111: 3653–3664. [Google Scholar]
  5. Howard M, Grimaldi JC, Bazan JF, et al. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 1993 ; 262: 1056–1059. [Google Scholar]
  6. van de Donk N, Usmani SZ. CD38 Antibodies in multiple myeloma: Mechanisms of action and modes of resistance. Front Immunol 2018 ; 9: 2134. [CrossRef] [PubMed] [Google Scholar]
  7. van de Donk NW, Janmaat ML, Mutis T, et al. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol Rev 2016 ; 270: 95–112. [CrossRef] [PubMed] [Google Scholar]
  8. de Weers M, Tai YT, van der Veer MS, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol 2011 ; 186: 1840–1848. [CrossRef] [PubMed] [Google Scholar]
  9. Deckert J, Wetzel MC, Bartle LM, et al. SAR650984, a novel humanized CD38-targeting antibody, demonstrates potent antitumor activity in models of multiple myeloma and other CD38+ hematologic malignancies. Clin Cancer Res 2014 ; 20: 4574–4583. [CrossRef] [PubMed] [Google Scholar]
  10. Lammerts van Bueren J, Jakobs D, Kaldenhoven N, et al. Direct in vitro comparison of daratumumab with surrogate analogs of CD38 antibodies MOR03087, SAR650984 and Ab79. Blood 2014; 124: 3474-. [Google Scholar]
  11. Jiang H, Acharya C, An G, et al. SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide. Leukemia 2016 ; 30: 399–408. [CrossRef] [PubMed] [Google Scholar]
  12. Krejcik J, Casneuf T, Nijhof IS, et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 2016 ; 128: 384–394. [Google Scholar]
  13. Feng X, Zhang L, Acharya C, et al. Targeting CD38 suppresses Induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma. Clin Cancer Res 2017 ; 23: 4290–4300. [CrossRef] [PubMed] [Google Scholar]
  14. Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med 2015 ; 373: 1207–1219. [Google Scholar]
  15. Lonial S, Weiss BM, Usmani SZ, et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial. Lancet 2016 ; 387: 1551–1560. [CrossRef] [PubMed] [Google Scholar]
  16. Clemens PL, Yan X, Lokhorst HM, et al. Pharmacokinetics of daratumumab following intravenous infusion in relapsed or refractory multiple myeloma after prior proteasome inhibitor and immunomodulatory drug treatment. Clin Pharmacokinet 2017 ; 56: 915–924. [CrossRef] [PubMed] [Google Scholar]
  17. Usmani SZ, Weiss BM, Plesner T, et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma. Blood 2016 ; 128: 37–44. [Google Scholar]
  18. Chari A, Nahi H, Mateos M-V, et al. Subcutaneous delivery of daratumumab in patients (pts) with relapsed or refractory multiple myeloma (RRMM): Pavo, an open-label, multicenter, dose escalation phase 1b study. Blood 2017 ; 130: 838. [Google Scholar]
  19. Raab MS, Chatterjee M, Goldschmidt H, et al. A phase I/IIa study of the CD38 antibody MOR202 alone and in combination with pomalidomide or lenalidomide in patients with relapsed or refractory multiple myeloma. Blood 2016 ; 128: 1152. [Google Scholar]
  20. Richter JR, Martin TG, Vij R, et al. Updated data from a phase II dose finding trial of single agent isatuximab (SAR650984, anti-CD38 mAb) in relapsed/refractory multiple myeloma (RRMM). J Clin Oncol 2016 ; 34: 8005. [Google Scholar]
  21. Nijhof IS, Groen RW, Noort WA, et al. Preclinical evidence for the therapeutic potential of CD38-targeted immuno-chemotherapy in multiple myeloma patients refractory to lenalidomide and bortezomib. Clin Cancer Res 2015 ; 21: 2802–2810. [CrossRef] [PubMed] [Google Scholar]
  22. van der Veer MS, de Weers M, van Kessel B, et al. The therapeutic human CD38 antibody daratumumab improves the anti-myeloma effect of newly emerging multi-drug therapies. Blood Cancer J 2011 ; 1: e41. [CrossRef] [PubMed] [Google Scholar]
  23. van der Veer MS, de Weers M, van Kessel B, et al. Towards effective immunotherapy of myeloma: enhanced elimination of myeloma cells by combination of lenalidomide with the human CD38 monoclonal antibody daratumumab. Haematologica 2011 ; 96: 284–290. [CrossRef] [PubMed] [Google Scholar]
  24. Dimopoulos MA, Oriol A, Nahi H, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med 2016 ; 375: 1319–1331. [Google Scholar]
  25. Martin T, Baz R, Benson DM, et al. A phase 1b study of isatuximab plus lenalidomide and dexamethasone for relapsed/refractory multiple myeloma. Blood 2017 ; 129: 3294–3303. [Google Scholar]
  26. Chari A, Suvannasankha A, Fay JW, et al. Daratumumab plus pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Blood 2017 ; 130: 974–981. [Google Scholar]
  27. Richardson PG, Mikhael J, Usmani SZ, et al. Updated results from a phase Ib study of isatuximab plus pomalidomide (Pom) and dexamethasone (dex) in relapsed/refractory multiple myeloma (RRMM). Blood 2017 ; 130: 1887. [Google Scholar]
  28. Jakubowiak AJ, Chari A, Lonial S, et al. Daratumumab (DARA) in combination with carfilzomib, lenalidomide, and dexamethasone (KRd) in patients (pts) with newly diagnosed multiple myeloma (MMY1001): An open-label, phase 1b study. J Clin Oncol 2017 ; 35: 8000. [Google Scholar]
  29. Palumbo A, Chanan-Khan A, Weisel K, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med 2016 ; 375: 754–766. [Google Scholar]
  30. Nijhof IS, Groen RW, Lokhorst HM, et al. Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab. Leukemia 2015 ; 29: 2039–2049. [CrossRef] [PubMed] [Google Scholar]
  31. Nijhof IS, Casneuf T, van Velzen J, et al. CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Blood 2016 ; 128: 959–970. [Google Scholar]
  32. Garcia-Guerrero E, Gogishvili T, Danhof S, et al. Panobinostat induces CD38 upregulation and augments the antimyeloma efficacy of daratumumab. Blood 2017 ; 129: 3386–3388. [Google Scholar]
  33. Casneuf T, Xu XS, Adams HC, 3rd, et al. Effects of daratumumab on natural killer cells and impact on clinical outcomes in relapsed or refractory multiple myeloma. Blood Adv 2017 ; 1: 2105–2114. [Google Scholar]
  34. Wang Y, Zhang Y, Hughes T, et al. Fratricide of NK cells in Daratumumab therapy for multiple myeloma overcome by ex vivo-expanded autologous NK cells. Clin Cancer Res 2018 ; 24: 4006–4017. [CrossRef] [PubMed] [Google Scholar]
  35. de Haart SJ, Holthof L, Noort WA, et al. Sepantronium bromide (YM155) improves daratumumab-mediated cellular lysis of multiple myeloma cells by abrogation of bone marrow stromal cell-induced resistance. Haematologica 2016 ; 101: e339–e342. [CrossRef] [PubMed] [Google Scholar]
  36. van Bommel PE, He Y, Schepel I, et al. CD20-selective inhibition of CD47-SIRPalpha don’t eat me signaling with a bispecific antibody-derivative enhances the anticancer activity of daratumumab, alemtuzumab and obinutuzumab. Oncoimmunology 2018 ; 7: e1386361. [CrossRef] [PubMed] [Google Scholar]
  37. Rigalou A, Ryan A, Natoni A, et al. Potentiation of anti-myeloma activity of daratumumab with combination of cyclophosphamide, lenalidomide or bortezomib via a tumor secretory response that greatly augments macrophage-induced ADCP. Blood 2016 ; 128: 2101. [Google Scholar]
  38. Naicker S, Rigalou A, McEllistrim C, et al. Patient data supports the rationale of low dose cyclophosphamide to potentiate the anti-myeloma activity of daratumumab through augmentation of macrophage-induced ADCP. Blood 2017 ; 130: 121. [Google Scholar]
  39. Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol 2017 ; 18: e731–e741. [CrossRef] [PubMed] [Google Scholar]
  40. Koyama S, Akbay EA, Li YY, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Comm 2016 ; 7: 10501. [CrossRef] [PubMed] [Google Scholar]
  41. Chen L, Byers LA, Ullrich S, et al. CD38 as a novel immune checkpoint and a mechanism of resistance to the blockade of the PD-1/PD-L1 axis. J Clin Oncol 2017 ; 35: 79. [Google Scholar]
  42. Bezman NA, Kinder M, Jhatakia AD, et al. Antitumor activity associated with dual targeting of CD38 and programmed death-1 (PD-1) pathways in preclinical models. Cancer Res 2018; 78 (abstract 1727). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.