Open Access
Med Sci (Paris)
Volume 35, Number 8-9, Août–Septembre 2019
Page(s) 616 - 618
Section Le Magazine
Published online 18 September 2019
  1. Organisation Mondiale de la Santé. Global hepatitis report. Genève: OMS, 2017 [Google Scholar]
  2. Hamdane N, Baumert T, Zeisel MB. Carcinome hépatocellulaire après éradication du virus de l‘hépatite C par des antiviraux à action directe. Med Sci (Paris) 2018 ; 34 : 391–394. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Bartenschlager R, Baumert TF, Bukh J, et al. Critical challenges and emerging opportunities in hepatitis C virus research in an era of potent antiviral therapy: considerations for scientists and funding agencies. Virus Res 2018 ; 248 : 53–62. [CrossRef] [PubMed] [Google Scholar]
  4. Bartosch B, Verney G, Dreux M, et al. An interplay between the hyper-variable region 1 of the HCV E2 glycoprotein, the scavenger receptor BI and HDL promotes both enhancement of infection and protection against neutralizing antibodies. J Virol 2005 ; 79 : 8217–8229. [CrossRef] [PubMed] [Google Scholar]
  5. André P, Komurian-Pradel F, Deforges S, et al. Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol 2002 ; 76 : 6919–6928. [CrossRef] [PubMed] [Google Scholar]
  6. Dreux M, Pietschmann T, Granier C, et al. High density lipoprotein inhibits hepatitis C virus-neutralizing antibodies by stimulating cell entry via activation of the scavenger receptor BI. J Biol Chem 2006 ; 281 : 18285–18295. [CrossRef] [PubMed] [Google Scholar]
  7. Merz A, Long G, Hiet MS, et al. Biochemical and morphological properties of HCV particles and determination of their lipidome. J Biol Chem 2011 ; 286 : 3018–3032. [CrossRef] [PubMed] [Google Scholar]
  8. Dao Thi VL, Granier C, Zeisel MB, Guérin M, et al. Characterization of hepatitis C virus particle subpopulations reveals multiple usage of SRBI for entry steps. J Biol Chem 2012 ; 287 : 31242–31257. [CrossRef] [PubMed] [Google Scholar]
  9. Podevin P, Carpentier A, Pene V, et al. Production of infectious hepatitis C virus in primary cultures of human adult hepatocytes. Gastroenterology 2010 ; 139 : 1355–1364. [CrossRef] [PubMed] [Google Scholar]
  10. Calattini S, Fusil F, Mancip J, et al. Functional and biochemical characterization of Hepatitis C virus (HCV) particles produced in a humanized liver mouse model. J Biol Chem 2015 ; 290 : 23173–23187. [CrossRef] [PubMed] [Google Scholar]
  11. Denolly, Granier C, Fontaine N, et al. A serum protein factor mediates maturation and apoB-association of HCV particles. J Hepatol 2019; 70 : 626–38. [CrossRef] [PubMed] [Google Scholar]
  12. Lavillette D, Morice Y, Germanidis G, et al. Human serum facilitates hepatitis C virus infection, and neutralizing responses inversely correlate with viral replication kinetics at the acute phase of hepatitis C virus infection. J Virol 2005 ; 79 : 6023–6034. [CrossRef] [PubMed] [Google Scholar]
  13. Fafi-Kremer S, Fauvelle C, Felmlee DJ, et al. Neutralizing antibodies and pathogenesis of hepatitis C virus infection. Viruses 2012 ; 4 : 2016–2030. [CrossRef] [PubMed] [Google Scholar]
  14. Prentoe J, Serre SB, Ramirez S, et al. HVR1 deletion and required adaptive envelope mutations confer decreased dependancy on SRBI and LDLr for HCV. J Virol 2014 ; 88 : 1725–1739. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.