Med Sci (Paris)
Volume 35, Number 6-7, Juin-Juillet 2019
Nos jeunes pousses ont du talent !
Page(s) 584 - 585
Section Partenariat médecine/sciences - Écoles doctorales - Masters
Published online 05 July 2019
  1. World Health Organization. Vector-borne diseases 2017. [Google Scholar]
  2. Brownstein JS, Hett E, O’Neill SL. The potential of virulent Wolbachia to modulate disease transmission by insects. J Invertebr Pathol 2003 ; 84 : 24–29. [CrossRef] [PubMed] [Google Scholar]
  3. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, et al. A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium. Cell 2009 ; 139 : 1268–1278. [CrossRef] [PubMed] [Google Scholar]
  4. Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti toll pathway controls Dengue virus infection. PLoS Pathog 2008 ; 4 : e1000098. [CrossRef] [PubMed] [Google Scholar]
  5. Lin M, Rikihisa Y. Ehrlichia chaffeensis and Anaplasma phagocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival. Infect Immun 2003 ; 71 : 5324–5331. [CrossRef] [PubMed] [Google Scholar]
  6. Gay B, Bernard E, Solignat M, et al. pH-dependent entry of chikungunya virus into Aedes albopictus cells. Infect Genet Evol 2012 ; 12 : 1275–1281. [CrossRef] [Google Scholar]
  7. Carro AC, Damonte EB. Requirement of cholesterol in the viral envelope for dengue virus infection. Virus Res 2013 ; 174 : 78–87. [CrossRef] [PubMed] [Google Scholar]
  8. Atella GC, Bittencourt-Cunha PR, Nunes RD, et al. The major insect lipoprotein is a lipid source to mosquito stages of malaria parasite. Acta Trop 2009 ; 109 : 159–162. [CrossRef] [PubMed] [Google Scholar]
  9. Geoghegan V, Stainton K, Rainey SM, et al. Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti cells. Nat Commun 2017 ; 8 : 526. [CrossRef] [PubMed] [Google Scholar]
  10. Caragata EP, Rancès E, Hedges LM, et al. Dietary cholesterol modulates pathogen blocking by Wolbachia. PLoS Pathog 2013 ; 9 : e1003459. [CrossRef] [PubMed] [Google Scholar]
  11. Kambris Z, Blagborough AM, Pinto SB, et al. Wolbachia stimulates immune gene expression and inhibits Plasmodium development in Anopheles gambiae. PLoS Pathog 2010 ; 6 : e1001143. [CrossRef] [PubMed] [Google Scholar]
  12. Pan X, Zhou G, Wu J, et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 2012 ; 109 : E23–E31. [CrossRef] [Google Scholar]
  13. Rancès E, Johnson TK, Popovici J, et al. The Toll and Imd pathways are not required for Wolbachia-mediated Dengue virus interference. J Virol 2013 ; 87 : 11945–11949. [CrossRef] [PubMed] [Google Scholar]
  14. Lu P, Bian G, Pan X, Xi Z. Wolbachia induces density-dependent inhibition to Dengue virus in mosquito cells. PLoS Negl Trop Dis 2012 ; 6 : e1754. [CrossRef] [PubMed] [Google Scholar]
  15. Bian G, Zhou G, Lu P, Xi Z. Replacing a native Wolbachia with a novel strain results in an increase in endosymbiont load and resistance to Dengue virus in a mosquito vector. PLoS Negl Trop Dis 2013 ; 7 : e2250. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.