Organoïdes
Open Access
Issue
Med Sci (Paris)
Volume 35, Number 6-7, Juin-Juillet 2019
Organoïdes
Page(s) 549 - 555
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019096
Published online 05 July 2019
  1. Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol 2016 ; 18 : 246–254. [CrossRef] [PubMed] [Google Scholar]
  2. Picollet-D’hahan N, Dolega ME, Freida D, et al. Deciphering cell intrinsic properties: A key issue for robust organoid production. Trends Biotechnol 2017; 35 : 1035–48. [CrossRef] [PubMed] [Google Scholar]
  3. Thompson CA, DeLaForest A, Battle MA. Patterning the gastrointestinal epithelium to confer regional-specific functions. Dev Biol 2018 ; 435 : 97–108. [CrossRef] [PubMed] [Google Scholar]
  4. Noah TK, Donahue B, Shroyer NF. Intestinal development and differentiation. Exp Cell Res 2011 ; 317 : 2702–2710. [Google Scholar]
  5. Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev. Cell Dev Biol 2009 ; 25 : 221–251. [Google Scholar]
  6. Coulombel L.. Pluripotence : une définition à géométrie variable. Med Sci (Paris) 2009 ; 25 : 798–801. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. McCauley HA, Wells JM. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development 2017 ; 144 : 958–962. [Google Scholar]
  8. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998 ; 282 : 1145–1147. [Google Scholar]
  9. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 ; 126 : 663–676. [CrossRef] [PubMed] [Google Scholar]
  10. D’Amour KA, Agulnick AD, Eliazer S, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005 ; 23 : 1534–1541. [CrossRef] [PubMed] [Google Scholar]
  11. Trisno SL, Philo KED, McCracken KW, et al. Esophageal organoids from human pluripotent stem cells delineate Sox2 functions during esophageal specification. Cell Stem Cell 2018 ; 23 : 501–515.e7. [Google Scholar]
  12. Zhang Y, Yang Y, Jiang M, et al. 3D Modeling of esophageal development using human PSC-derived basal progenitors reveals a critical role for Notch signaling. Cell Stem Cell 2018 ; 23 : 516–529.e5. [Google Scholar]
  13. Broda TR, McCracken KW, Wells JM. Generation of human antral and fundic gastric organoids from pluripotent stem cells. Nat Protoc 2019 ; 14 : 28–50. [CrossRef] [PubMed] [Google Scholar]
  14. McCracken KW, Catá EM, Crawford CM, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 2014 ; 516 : 400–404. [CrossRef] [PubMed] [Google Scholar]
  15. McCracken KW, Aihara E, Martin B, et al. Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature 2017 ; 541 : 182–187. [CrossRef] [PubMed] [Google Scholar]
  16. Spence JR, Mayhew CN, Rankin SA, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 2011 ; 470 : 105–109. [CrossRef] [PubMed] [Google Scholar]
  17. Finkbeiner SR, Hill DR, Altheim CH, et al. Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivo. Stem Cell Reports 2015 ; 4 : 1140–1155. [Google Scholar]
  18. Watson CL, Mahe MM, Munera J, et al. An in vivo model of human small intestine using pluripotent stem cells. Nat Med 2014 ; 20 : 1310–1314. [CrossRef] [PubMed] [Google Scholar]
  19. Múnera JO, Sundaram N, Rankin SA, et al. Differentiation of human pluripotent stem cells into colonic organoids via transient activation of BMP signaling. Cell Stem Cell 2017 ; 21 : 51–64.e6. [Google Scholar]
  20. Workman MJ, Mahe MM, Trisno S, et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med 2017 ; 23 : 49–59. [CrossRef] [PubMed] [Google Scholar]
  21. Schlieve CR, Fowler KL, Thornton M, et al. Neural crest cell implantation restores enteric nervous system function and alters the gastrointestinal transcriptome in human tissue-engineered small intestine. Stem Cell Reports 2017 ; 9 : 883–896. [CrossRef] [PubMed] [Google Scholar]
  22. Mahe MM. Engineering a second brain in a dish. Brain Res 2018 ; 1693 : 165–168. [CrossRef] [PubMed] [Google Scholar]
  23. Jung KB, Lee H, Son YS, et al. Interleukin-2 induces the in vitro maturation of human pluripotent stem cell-derived intestinal organoids. Nat Commun 2018 ; 9 : 3039. [CrossRef] [PubMed] [Google Scholar]
  24. Hill DR, Spence JR. Gastrointestinal organoids: understanding the molecular basis of the host-microbe interface. Cell Mol Gastroenterol Hepatol 2017 ; 3 : 138–149. [Google Scholar]
  25. Karve SS, Pradhan S, Ward DV, et al. Intestinal organoids model human responses to infection by commensal and Shiga toxin producing Escherichia coli. PLoS One 2017 ; 12 : e0178966. [CrossRef] [PubMed] [Google Scholar]
  26. Holokai L, Chakrabarti J, Broda T, et al. Increased programmed death-ligand 1 is an early epithelial cell response to Helicobacter pylori infection. PLoS Pathog. 2019 ; 15 : e1007468. [CrossRef] [PubMed] [Google Scholar]
  27. Hill DR, Huang S, Nagy MS, et al. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. eLife 2017; 6. [Google Scholar]
  28. Leslie JL, Huang S, Opp JS, et al. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun 2015 ; 83 : 138–145. [CrossRef] [PubMed] [Google Scholar]
  29. Finkbeiner SR, Spence JR. A gutsy task: generating intestinal tissue from human pluripotent stem cells. Dig Dis Sci 2013 ; 58 : 1176–1184. [CrossRef] [PubMed] [Google Scholar]
  30. Crespo M, Vilar E, Tsai SY, et al. Colonic organoids derived from human pluripotent stem cells for modeling colorectal cancer and drug testing. Nat Med 2017 ; 23 : 878–884. [CrossRef] [PubMed] [Google Scholar]
  31. Sommer CA, Capilla A, Molina-Estevez FJ, et al. Modeling APC mutagenesis and familial adenomatous polyposis using human iPS cells. PLoS One 2018 ; 13 : e0200657. [CrossRef] [PubMed] [Google Scholar]
  32. Bertaux-Skeirik N, Feng R, Schumacher MA, et al. CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathog 2015 ; 11 : e1004663. [CrossRef] [PubMed] [Google Scholar]
  33. Nakamura T, Sato T. Advancing intestinal organoid technology toward regenerative medicine. Cell Mol Gastroenterol Hepatol 2018 ; 5 : 51–60. [Google Scholar]
  34. Ingber DE. Developmentally inspired human organs on chips. Development 2018; 145. pii: dev156125. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.