Open Access
Med Sci (Paris)
Volume 35, Number 4, Avril 2019
Page(s) 367 - 373
Section Repères
Published online 30 April 2019
  1. Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas : with a report of ten original cases. Am J Med Sci 1893 ; 105 : 487-511. [Google Scholar]
  2. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumor. N Engl J Med 1975 ; 72 : 3666-70. [Google Scholar]
  3. Old LJ, Clark DA, Benacerraf B. Effect of Bacillus Calmette Guérin infection on transplanted tumors in the mouse. Nature 1959 ; 184 : 291-2. [CrossRef] [PubMed] [Google Scholar]
  4. Burnet M. Cancer-a biological approach. I. The processes of control. Br Med J 1957 ; 5022 : 779-86. [Google Scholar]
  5. Traversari K, van der bruggen P, Luescher IF, et al. A nonapeptide encoded by human Gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 1992 ; 176 : 1453-7. [CrossRef] [PubMed] [Google Scholar]
  6. Dun GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting : from immunosurveillance to tumor escape. Nat Immunol 2002 ; 3 : 991-8. [CrossRef] [PubMed] [Google Scholar]
  7. Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006 ; 313 : 1960-4. [Google Scholar]
  8. Dieu-Nosjean MC, Antoine M, Danel C, et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 2008 ; 26 : 4410-7. [CrossRef] [PubMed] [Google Scholar]
  9. Bessis M, Bernard J. Remarquables résultats du traitement par l’exsanguino-transfusion d’un cas de leucémie aiguë. Bull Mem Soc Med Hop Paris 1947 ; 63 : 871-7. [PubMed] [Google Scholar]
  10. Mathé G, Bernard J, Schwarzenberg L, et al. Trial treatment of patients afflicted with acute leukemia in remission with total irradiation followed by homologous bone marrow transfusion. Rev Fr Etud Clin Biol 1959 ; 4 : 675-704. [PubMed] [Google Scholar]
  11. Rosenberg SA, Mulé JJ, Spiess PJ, et al. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med 1985 ; 161 : 1169-88. [CrossRef] [PubMed] [Google Scholar]
  12. Rosenberg SA, Lotze MT, Muul LM, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985 ; 313 : 1485-92. [Google Scholar]
  13. Spiess PJ, Yang JC, Rosenberg SA. In vivo antitumor activity of tumor-infiltrating lymphocytes expanded in recombinant interleukin-2. J Natl Cancer Inst 1987 ; 79 : 1067-75. [PubMed] [Google Scholar]
  14. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010 ; 363 : 711-23. [Google Scholar]
  15. Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors : safety, clinical activity, pharmacodynamics, and immunology correlates. J Clin Oncol 2010 ; 28 : 3167-75. [CrossRef] [PubMed] [Google Scholar]
  16. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 1989 ; 86 : 10024-8. [CrossRef] [Google Scholar]
  17. Kalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011 ; 3 : 95ra73. [Google Scholar]
  18. Brentjens RJ, Davila ML, Rivière I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013 ; 5 :177ra38. [Google Scholar]
  19. Dossett ML, Teague RM, Schmitt TM, et al. Adoptive immunotherapy of disseminated leukemia with TCR-transduced, CD8+ T cells expressing a known endogenous TCR. Mol Ther 2009 ; 17 : 742-9. [CrossRef] [PubMed] [Google Scholar]
  20. Miller RA, Maloney DG, Warnke R, Levy R. Treatment of B-cell lymphoma with monoclonal antiidiotype antibody. N Engl J Med 1982 ; 306 : 517-22. [Google Scholar]
  21. Park S, Jiang Z, Mortenson ED, et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 2010 ; 18 : 160-70. [CrossRef] [PubMed] [Google Scholar]
  22. Abes R, Gélizé E, Fridman WH, Teillaud JL. Long-lasting anti-tumor protection by anti-CD20 antibody through cellular immune response. Blood 2010 ; 116 : 926-34. [Google Scholar]
  23. Casarès N, Pequignot MO, Tesnière A, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 2005 ; 202 : 1691-701. [CrossRef] [PubMed] [Google Scholar]
  24. Brack C, Hirama M, Lenhard-Schuller, Tonegawa S. A complete immunoglobulin gene is created by somatic recombination. Cell, 1978 ; 15 : 1-14. [CrossRef] [PubMed] [Google Scholar]
  25. Breathnach R, Mandel JL, Chambon P. Ovalbumin gene is split in chicken DNA. Nature 1977 ; 270 : 314-9. [CrossRef] [PubMed] [Google Scholar]
  26. Tilghman SM, Tiemeier DC, Seidman JG, et al. Intervening sequence of DNA identified in the structural portion of a mouse b-globin gene. Proc Natl Acad Sci USA 1978 ; 75 : 725-9. [CrossRef] [Google Scholar]
  27. Honjo T, Kataoka T. Organization of immunoglobulin heavy chain genes and allelic deletion model. Proc Natl Acad Sci USA 1978 ; 75 : 2140-4. [CrossRef] [Google Scholar]
  28. Kataoka T, Kawakami T, Takahashi N, Honjo T. Rearrangement of immunoglobulin g1-chain gene and mechanism for heavy-chain class switch. Proc Natl Acad Sci USA 1980 ; 77 : 919-23. [CrossRef] [Google Scholar]
  29. Shimizu A, Akahashi N, Yaoita Y, Honjo T. Organization of the constant-region gene family of the mouse immunoglobulin heavy chain. Cell 1982 ; 28 : 499-506. [CrossRef] [PubMed] [Google Scholar]
  30. Muramatsu M, Sankaranand VS, Anant S, et al. Specific expression of Activation-induced Cytidine Deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 1999 ; 274 : 18470-6. [PubMed] [Google Scholar]
  31. Revy P, Muto T, Levy Y, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIMG2). Cell, 2000 ; 102 : 565-75. [CrossRef] [PubMed] [Google Scholar]
  32. Muramatsu M, Kinoshita K, Fagarasan S, et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000 ; 102 : 553-63. [CrossRef] [PubMed] [Google Scholar]
  33. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992 ; 11 : 3887-95. [CrossRef] [PubMed] [Google Scholar]
  34. Nishimura Y, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999 ; 11 : 141-51. [CrossRef] [PubMed] [Google Scholar]
  35. Okazaki T, Tanaka Y, Nishio R, et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med 2003 ; 9 : 1477-83. [CrossRef] [PubMed] [Google Scholar]
  36. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000 ; 192 : 1027-34. [CrossRef] [PubMed] [Google Scholar]
  37. Okazaki T, Maeda A, Nishimura H, et al. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci USA 2001 ; 98 : 13866-71. [CrossRef] [Google Scholar]
  38. Amigorena S, Bonnerot C, Drake JR, et al. Cytoplasmic domain heterogeneity and functions of IgG Fc receptors in B lymphocytes. Science 1992 ; 256 : 1808-12. [Google Scholar]
  39. Iwai Y, Ishida Y, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 2002 ; 99 : 12293-7. [Google Scholar]
  40. Iwai Y, Terawaki S, Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol 2005 ; 17 : 133-44. [CrossRef] [PubMed] [Google Scholar]
  41. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 1995 ; 182 : 459-65. [CrossRef] [PubMed] [Google Scholar]
  42. Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994 ; 1 : 405-13. [CrossRef] [PubMed] [Google Scholar]
  43. Brunet JF, Denizot F, Luciani MF, et al. A new member of the immunoglobulin superfamily-CTLA-4. Nature 1987 ; 328 : 267-70. [CrossRef] [PubMed] [Google Scholar]
  44. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996 ; 271 : 1734-6. [Google Scholar]
  45. Kwon ED., Hurwitz AA, Foster BA, et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci USA 1997 ; 94 : 8099–103. [CrossRef] [Google Scholar]
  46. Coley WB. Late results of the treatment of inoperable sarcoma by the mixed toxins of Erysipelas and Bacillus prodigosus. Am J Med Sci 1906 ; 131 : 375-430. [Google Scholar]
  47. Hanahan D, Weinberg RA. Hallmarks of cancer : the next generation. Cell 2011 ; 144 : 646-74. [CrossRef] [PubMed] [Google Scholar]
  48. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975 ; 256 : 495-7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.