Open Access
Issue
Med Sci (Paris)
Volume 35, Number 4, Avril 2019
Page(s) 332 - 345
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019072
Published online 30 April 2019
  1. Ramaswami R, Morrow M, Jagsi R. Contralateral prophylactic mastectomy. N Engl J Med 2017 ; 377 : 1289–1291. [Google Scholar]
  2. Hunt KK, Euhus DM, Boughey JC, et al. Society of surgical oncology breast disease working group statement on prophylactic (risk-reducing) mastectomy. Ann Surg Oncol 2017 ; 24 : 375–397. [CrossRef] [PubMed] [Google Scholar]
  3. Jagsi R, Hawley ST, Griffith KA, et al. Contralateral prophylactic mastectomy decisions in a population-based sample of patients with early-stage breast cancer. JAMA Surg 2017 ; 152 : 274–282. [PubMed] [Google Scholar]
  4. Copson ER, Maishman TC, Tapper WJ, et al. Germline BRCA mutation and outcome in young-onset breast cancer (POSH): a prospective cohort study. Lancet Oncol 2018 ; 19 : 169–180. [CrossRef] [PubMed] [Google Scholar]
  5. Rebbeck TR, Mitra N, Wan F, et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA 2015 ; 313 : 1347–1361. [CrossRef] [PubMed] [Google Scholar]
  6. Finch APM, Lubinski J, Møller P, et al. Impact of oophorectomy on cancer incidence and mortality in women with a BRCA1 or BRCA2 mutation. J Clin Oncol 2014 ; 32 : 1547–1553. [CrossRef] [PubMed] [Google Scholar]
  7. Domchek SM, Friebel TM, Singer CF, et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA 2010 ; 304 : 967–975. [CrossRef] [PubMed] [Google Scholar]
  8. Leblanc E, Narducci F, Farre I, et al. Radical fimbriectomy : a reasonable temporary risk-reducing surgery for selected women with a germ line mutation of BRCA 1 or 2 genes ?. Rationale and preliminary development. Gynecol Oncol 2011 ; 121 : 472–476. [CrossRef] [Google Scholar]
  9. Cuzick J, Sestak I, Bonanni B, et al. Selective oestrogen receptor modulators in prevention of breast cancer : an updated meta-analysis of individual participant data. Lancet 2013 ; 381 : 1827–1834. [CrossRef] [PubMed] [Google Scholar]
  10. Evans DG, Graham J, O’Connell S, et al. Familial breast cancer : summary of updated NICE guidance. BMJ 2013 ; 346 : f3829. [Google Scholar]
  11. Visvanathan K, Hurley P, Bantug E, et al. Use of pharmacologic interventions for breast cancer risk reduction : American society of clinical oncology clinical practice guideline. J Clin Oncol 2013 ; 31 : 2942–2962. [CrossRef] [PubMed] [Google Scholar]
  12. Pujol P, Lasset C, Berthet P, et al. Uptake of a randomized breast cancer prevention trial comparing letrozole to placebo in BRCA1/2 mutations carriers : the LIBER trial. Fam Cancer 2012 ; 11 : 77–84. [CrossRef] [PubMed] [Google Scholar]
  13. Sénéchal C, Reyal F, Callet N, et al. Hormonotherapy for breast cancer prevention : What about women with genetic predisposition to breast cancer ?. Bull Cancer 2016 ; 103 : 273–281. [CrossRef] [PubMed] [Google Scholar]
  14. Derks-Smeets IAP, Schrijver LH, et al. Ovarian stimulation for IVF and risk of primary breast cancer in BRCA1/2 mutation carriers. Br J Cancer 2018 ; 119 : 357–363. [PubMed] [Google Scholar]
  15. Cohen-Haguenauer O.. Prédisposition héréditaire au cancer du sein (1): génétique. Med Sci (Paris) 2019 ; 35 : 138–151. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Thompson ER, Rowley SM, Li N, et al. Panel testing for familial breast cancer : calibrating the tension between research and clinical care. J Clin Oncol 2016 ; 34 : 1455–1459. [CrossRef] [PubMed] [Google Scholar]
  17. Couch FJ, Shimelis H, Hu C, et al. Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol 2017 ; 3 : 1190–1196. [CrossRef] [PubMed] [Google Scholar]
  18. Buys SS, Sandbach JF, Gammon A, et al. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer 2017 ; 123 : 1721–1730. [CrossRef] [PubMed] [Google Scholar]
  19. Tung N, Battelli C, Allen B, et al. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer 2015 ; 121 : 25–33. [CrossRef] [PubMed] [Google Scholar]
  20. Castéra L, Krieger S, Rousselin A, et al. Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. Eur J Hum Genet 2014 ; 22 : 1305–1313. [Google Scholar]
  21. Southey MC, Teo ZL, Dowty JG, et al. A PALB2 mutation associated with high risk of breast cancer. Breast Cancer Res 2010 ; 12 : R109. [CrossRef] [PubMed] [Google Scholar]
  22. Southey MC, Goldgar DE, Winqvist R, et al. PALB2, CHEK2 and ATM rare variants and cancer risk : data from COGS. J Med Genet 2016 ; 53 : 800–811. [CrossRef] [PubMed] [Google Scholar]
  23. Ramus SJ, Song H, Dicks E, et al. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer Inst 2015; 107 : pii : djv214. [Google Scholar]
  24. Rosenthal ET, Bernhisel R, Brown K, et al. Clinical testing with a panel of 25 genes associated with increased cancer risk results in a significant increase in clinically significant findings across a broad range of cancer histories. Cancer Genet 2017 ; 218–9 : 58–68. [Google Scholar]
  25. Kurian AW, Ward KC, Hamilton AS, et al. Uptake, results, and outcomes of germline multiple-gene sequencing after diagnosis of breast cancer. JAMA Oncol 2018 ; 4 : 1066–1072. [PubMed] [Google Scholar]
  26. Moretta-Serra J, Berthet P, Bonadona V, et al. Recommandation française pour l’analyse en panel de gènes dans la cadre de la prédisposition héréditaire au cancer du sein ou de l’ovaire. Quels gènes analyser ? Pour quelle utilité clinique ?. Bull Cancer 2018 ; 105 : 907–917. [CrossRef] [PubMed] [Google Scholar]
  27. Easton DF, Pharoah PDP, Antoniou AC, et al. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med 2015 ; 372 : 2243–2257. [CrossRef] [PubMed] [Google Scholar]
  28. Antoniou AC, Casadei S, Heikkinen T, et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med 2014 ; 371 : 497–506. [CrossRef] [PubMed] [Google Scholar]
  29. Cybulski C Kluz´niak W, Huzarski T, et al. Clinical outcomes in women with breast cancer and a PALB2 mutation : a prospective cohort analysis. Lancet Oncol 2015 ; 16 : 638–644. [CrossRef] [PubMed] [Google Scholar]
  30. Bubien V, Bonnet F, Brouste V, et al. High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet 2013 ; 50 : 255–263. [CrossRef] [PubMed] [Google Scholar]
  31. Bougeard G, Renaux-Petel M, Flaman JM, et al. Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol 2015 ; 33 : 2345–2352. [CrossRef] [PubMed] [Google Scholar]
  32. Pharoah PD, Guilford P, Caldas C. International gastric cancer linkage consortium. Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology 2001 ; 121 : 1348–1353. [CrossRef] [PubMed] [Google Scholar]
  33. Fitzgerald RC, Hardwick R, Huntsman D, et al. Hereditary diffuse gastric cancer : updated consensus guidelines for clinical management and directions for future research. J Med Genet 2010 ; 47 : 436–444. [CrossRef] [PubMed] [Google Scholar]
  34. Benusiglio PR, Malka D, Rouleau E, et al. CDH1 germline mutations and the hereditary diffuse gastric and lobular breast cancer syndrome : a multicentre study. J Med Genet 2013 ; 50 : 486–489. [CrossRef] [PubMed] [Google Scholar]
  35. Beggs AD, Latchford AR, Vasen HF, et al. Peutz-Jeghers syndrome : a systematic review and recommendations for management. Gut 2010 ; 59 : 975–986. [CrossRef] [PubMed] [Google Scholar]
  36. van Lier MG, Wagner A, Mathus-Vliegen EM, et al. High cancer risk in Peutz-Jeghers syndrome : a systematic review and surveillance recommendations. Am J Gastroenterol 2010 ; 105 : 1258–1264. [Google Scholar]
  37. Bernstein JL, Haile RW, Stovall M, et al. WECARE study collaborative group. Radiation exposure, the ATM gene, and contralateral breast cancer in the women’s environmental cancer and radiation epidemiology study. J Natl Cancer Inst 2010 ; 102 : 475–483. [CrossRef] [PubMed] [Google Scholar]
  38. Cohen-Haguenauer O. Quantification du risque individuel de cancer du sein chez la femme jeune. In: La femme jeune face au cancer du sein. Anne Lesur, Bruno Cutuli, Jean-Pierre Bellocq, Béatrice Gairard (eds). Actes de la 32e Journée de la Société Française de Sénologie et de Pathologie Mammaire, Strasbourg. Paris : Edimark, 2010 : 92–107. [Google Scholar]
  39. Cohen-Haguenauer O, Espié M. Les scores de risque du cancer du sein : estimation du risque incident en population générale et dans le contexte d’une prédisposition héréditaire. Réalités en Gynécologie-Obstétrique 2009 ; 141 : 8–15. [Google Scholar]
  40. Friedenson B.. Assessing and managing breast cancer risk : clinical tools for advising patients. Med GenMed 2004 ; 6 : 8. [Google Scholar]
  41. Antoniou A, Pharoah PD, Narod S, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history : a combined analysis of 22 studies. Am J Hum Genet 2003 ; 72 : 1117–1130. [Google Scholar]
  42. Gail MH, Brinton LA, Byar DP, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 1989 ; 81 : 1879–1886. [CrossRef] [PubMed] [Google Scholar]
  43. De Pauw A, Stoppa-Lyonnet D, Andrieu N, et al. Estimation du risque individuel de cancer du sein : intérêt et limites des modèles de calcul de risque. Bull Cancer 2009 ; 96 : 1–10. [Google Scholar]
  44. Santen RJ, Boyd NF, Chlebowski RT, et al. Breast cancer prevention collaborative group. Critical assessment of new risk factors for breast cancer : considerations for development of an improved risk prediction model. Endocr Relat Cancer 2007 ; 14 : 169–187. [Google Scholar]
  45. Claus EB, Risch N, Thompson WD. Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction. Cancer 1994 ; 73 : 643–651. [Google Scholar]
  46. Berry DA, Iversen ES, Gudbjartsson DF, et al. BRCAPRO validation, sensitivity of geenting testing of BRCA1/BRCA2, and prevalence of other breast cancer susceptibility genes. J Clin Oncol 2002 ; 20 : 2701–2712. [CrossRef] [PubMed] [Google Scholar]
  47. Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med 2004 ; 23 : 1111–1130. [CrossRef] [PubMed] [Google Scholar]
  48. Antoniou AC, Cunningham AP, Peto J, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers : updates and extensions. Br J Cancer 2008 ; 98 : 1457–1466. [CrossRef] [PubMed] [Google Scholar]
  49. Lee AJ, Cunningham AP, Tischkowitz M, et al. Incorporating truncating variants in PALB2, CHEK2, and ATM into the BOADICEA breast cancer risk model. Genet Med 2016 ; 18 : 1190–1198. [CrossRef] [PubMed] [Google Scholar]
  50. Mavaddat N, Rebbeck TR, Lakhani SR, et al. Incorporating tumour pathology information into breast cancer risk prediction algorithms. Breast Cancer Res 2010 ; 12 : R28. [CrossRef] [PubMed] [Google Scholar]
  51. Mavaddat N, Pharoah PD, Blows F, et al. Familial relative risks for breast cancer by pathological subtype : a population-based cohort study. Breast Cancer Res 2010 ; 12 : R10. [CrossRef] [PubMed] [Google Scholar]
  52. Byrski T, Gronwald J, Huzarski T, et al. Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol 2010 ; 28 : 375–379. [CrossRef] [PubMed] [Google Scholar]
  53. Von Minckwitz G, Schneeweiss A, Loibl S, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol 2014 ; 15 : 747–756. [CrossRef] [PubMed] [Google Scholar]
  54. Golshan M, Cirrincione CT, Sikov WM, et al. Impact of neoadjuvant chemotherapy in stage II-III triple negative breast cancer on eligibility for breast-conserving surgery and breast conservation rates : surgical results from CALGB 40603 (Alliance). Ann Surg 2015 ; 262 : 434–439. [CrossRef] [PubMed] [Google Scholar]
  55. Coates AS, Winer EP, Goldhirsch A, et al. Tailoring therapies-improving the management of early breast cancer : St Gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann Oncol 2015 ; 26 : 1533–1546. [CrossRef] [PubMed] [Google Scholar]
  56. Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the Double-Strand break. Trends Cell Biol 2016 ; 26 : 52–64. [Google Scholar]
  57. Kais Z, Rondinelli B, Holmes A, et al. FAND2 maintains fork stability in BRCA1/2-deficient tumors and promotes alternative end-joining DNA repair. Cell Rep 2016 ; 15 : 2488–2499. [CrossRef] [PubMed] [Google Scholar]
  58. Kinzler KW, Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 1997 ; 386 : 761–763. [CrossRef] [PubMed] [Google Scholar]
  59. Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005 ; 434 : 917–921. [CrossRef] [PubMed] [Google Scholar]
  60. Rehman FL, Lord CJ, Ashworth A. Synthetic lethal approaches to breast cancer therapy. Nat Rev Clin Oncol 2010 ; 7 : 718–724. [Google Scholar]
  61. Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009 ; 361 : 123–134. [CrossRef] [PubMed] [Google Scholar]
  62. Tutt A, Robson M, Garber JE, et al. Oral poly(ADP-ribose) polymerase inhibitor Olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer : a proof-of-concept trial. Lancet 2010 ; 376 : 235–244. [CrossRef] [PubMed] [Google Scholar]
  63. Gelmon KA, Tischkowitz M, Mackay H, et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer : a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol 2011 ; 12 : 852–861. [CrossRef] [PubMed] [Google Scholar]
  64. Kaufman B, Shapira-Frommer R, Schmutzler R K, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 2015 ; 33 : 244–250. [CrossRef] [PubMed] [Google Scholar]
  65. Ledermann JA, Harter P, Gourley C, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer : a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol 2014 ; 15 : 852–861. [CrossRef] [PubMed] [Google Scholar]
  66. Ledermann JA, Harter P, Gourley C, et al. Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy : an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Oncol 2016 ; 17 : 1579–1589. [CrossRef] [PubMed] [Google Scholar]
  67. Mirza MR, Monk BJ, Herrstedt J, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. ENGOT-OV16/NOVA investigators. N Engl J Med 2016 ; 375 : 2154–2164. [CrossRef] [PubMed] [Google Scholar]
  68. Shen Y, Rehman FL, Feng Y, et al. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res 2013 ; 19 : 5003–5015. [CrossRef] [PubMed] [Google Scholar]
  69. Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancerin patients with a germline BRCA mutation. N Eng J Med 2017 ; 377 : 523–533. [CrossRef] [Google Scholar]
  70. Litton JK, Rugo HS, Ettl J, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med 2018 ; 379 : 753–763. [CrossRef] [PubMed] [Google Scholar]
  71. To C, Kim EH, Royce DB, et al. The PARP inhibitors, veliparib and olaparib, are effective chemopreventive agents for delaying mammary tumor development in BRCA1-deficient mice. Cancer Prev Res Phila Pa 2014 ; 7 : 698–707. [CrossRef] [Google Scholar]
  72. Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013 ; 499 : 214–218. [CrossRef] [PubMed] [Google Scholar]
  73. Katz H, Alsharedi M. Immunotherapy in triple-negative breast cancer. Med Oncol 2017 ; 35 : 13. [CrossRef] [PubMed] [Google Scholar]
  74. Zacharakis N, Chinasssamy H, Black M, et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med 2018 ; 24 : 724–730. [CrossRef] [PubMed] [Google Scholar]
  75. King MC, Levy-Lahad E, Lahad A. Population-based screening for BRCA1 and BRCA2: 2014 Lasker Award. JAMA 2014 ; 312 : 1091–1092. [CrossRef] [PubMed] [Google Scholar]
  76. Turnbull C, Sud A, Houlston RS. Cancer genetics, precision prevention and a call to action. Nat Genet 2018 ; 50 : 1212–1218. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.