Open Access
Issue
Med Sci (Paris)
Volume 34, Number 10, Octobre 2018
Page(s) 778 - 781
Section Le Magazine
DOI https://doi.org/10.1051/medsci/2018214
Published online 19 November 2018
  1. Heun P, Laroche T, Shimada K, et al. Chromosome dynamics in the yeast interphase nucleus. Science 2001 ; 294 : 2181–2186. [CrossRef] [PubMed] [Google Scholar]
  2. Sung P. Introduction to the thematic minireview series: DNA double-strand break repair and pathway choice. J Biol Chem 2018 ; doi: 10.1074/jbc.TM118.003212 [Google Scholar]
  3. Miné-Hattab J, , Rothstein R. Increased chromosome mobility facilitates homology search during recombination. Nat Cell Biol 2012 ; 14 : 510–517. [CrossRef] [PubMed] [Google Scholar]
  4. Miné-Hattab J, , Rothstein R. Réparation de l‘ADN. Comment trouver le bon partenaire ?. Med Sci (Paris) 2012 ; 28 : 714–716. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Dion V, Kalck V, Horigome C, et al. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat Cell Biol 2012 ; 14 : 502–509. [CrossRef] [PubMed] [Google Scholar]
  6. Miné-Hattab J, , Rothstein R. DNA in motion during double-strand break repair. Trends Cell Biol 2013 ; 23 : 529–536. [CrossRef] [Google Scholar]
  7. Aten JA, Stap J, Krawczyk PM, et al. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 2004 ; 303 : 92–95. [CrossRef] [PubMed] [Google Scholar]
  8. Chiolo I, Minoda A, Colmenares SU, et al. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 2011 ; 144 : 732–744. [CrossRef] [PubMed] [Google Scholar]
  9. Krawczyk PM, Borovski T, Stap J, et al. Chromatin mobility is increased at sites of DNA double-strand breaks. J Cell Sci 2012 ; 125 : 2127–2133. [CrossRef] [PubMed] [Google Scholar]
  10. Miné-Hattab J, Recamier V, Izeddin I, et al. Multi-scale tracking reveals scale-dependent chromatin dynamics after DNA damage. Mol Biol Cell 2018 : 10.1091/mbc.E17-05-0317 [Google Scholar]
  11. Hajjoul H, Mathon J, Ranchon H, et al. High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome. Genome Res 2013 ; 23 : 1829–1838. [CrossRef] [PubMed] [Google Scholar]
  12. De Gennes PG, Kinetics of diffusioncontrolled processes in dense polymer systems. II.Effects of entanglements. J Chem Phys 1982 ; 76 : 3322–3326. [CrossRef] [Google Scholar]
  13. Faller R, Müller-Plathe F, Chain stiffness intensifies the reptation characteristics of polymer dynamics in the melt. Chemphyschem 2008 ; 2 : 180–184. [CrossRef] [Google Scholar]
  14. Herbert S, Brion A, Arbona JM, et al. Chromatin stiffening underlies enhanced locus mobility after DNA damage in budding yeast. EMBO J 2018 ; 36 : 2595–2608. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.