Free Access
Issue
Med Sci (Paris)
Volume 34, Number 1, Janvier 2018
Page(s) 79 - 82
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183401017
Published online 31 January 2018
  1. Cesarman E, Chang Y, Moore PS, et al. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 1995; 332 : 1186-91. [CrossRef] [PubMed] [Google Scholar]
  2. Münz C. Humanized mouse models for Epstein Barr virus infection. Curr Opin Virol 2017; 25 : 113-8. [CrossRef] [PubMed] [Google Scholar]
  3. Ma SD, Hegde S, Young KH, et al. A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J Virol 2011; 85 : 165-77. [CrossRef] [PubMed] [Google Scholar]
  4. Wang L-X, Kang G, Kumar P, et al. Humanized-BLT mouse model of Kaposi’s sarcoma-associated herpesvirus infection. Proc Natl Acad Sci USA 2014; 111 : 3146-51. [CrossRef] [Google Scholar]
  5. McHugh D, Caduff N, Barros MHM, et al. Persistent KSHV infection increases EBV-associated tumor formation in vivo via enhanced EBV lytic gene expression. Cell Host Microbe 2017; 22 : 61-73. [CrossRef] [PubMed] [Google Scholar]
  6. Altmann M, Hammerschmidt W. Epstein-Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis. PLoS Biol 2005; 3 : e404. [CrossRef] [PubMed] [Google Scholar]
  7. Hong GK, Gulley ML, Feng WH, et al. Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J Virol 2005; 79 : 13993-4003. [CrossRef] [PubMed] [Google Scholar]
  8. Miller G, Heston L, Grogan E, et al. Selective switch between latency and lytic replication of Kaposi’s sarcoma herpesvirus and Epstein-Barr virus in dually infected body cavity lymphoma cells. J Virol 1997; 71 : 314-24. [PubMed] [Google Scholar]
  9. LeGoff J, Roques P, Jenabian MA, et al. Variability of human immunodeficiency virus-1 in the female genital reservoir during genital reactivation of herpes simplex virus type 2. Clin Microbiol Infect 2015; 21 : 873.e1-9. [CrossRef] [Google Scholar]
  10. Thorley-Lawson D, Deitsch KW, Duca KA, Torgbor C.. The link between Plasmodium falciparum malaria and endemic Burkitt’s lymphoma-new insight into a 50-year-old enigma. PLoS Pathog 2016; 12 : e1005331. [CrossRef] [PubMed] [Google Scholar]
  11. Abate F, Ambrosio MR, Mundo L, et al. Distinct viral and mutational spectrum of endemic Burkitt lymphoma. PLoS Pathog 2015; 11 : e1005158. [CrossRef] [PubMed] [Google Scholar]
  12. Cachat A, Villaudy J, Rigal D, et al. Les souris ne sont pas des hommes et pourtant… Ce que les souris humanisées nous apprennent sur les maladies infectieuses. Med Sci (Paris) 2012; 28 : 63-8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. Manoury B, Fåhraeus R. Autocensure de la protèine EBNA1 pour échapper á la reconnaissance immunitaire. Med Sci (Paris) 2004; 20 : 5. [EDP Sciences] [Google Scholar]
  14. Cheeseman K, Certad G, Weitzman JB. Parasites et cancer : existe-t-il un lien? Med Sci (Paris) 2016; 32 : 867-73. [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.