Free Access
Issue
Med Sci (Paris)
Volume 33, Number 11, Novembre 2017
Page(s) 984 - 990
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173311016
Published online 04 December 2017
  1. Rescigno M. Intestinal microbiota and its effects on the immune system. Cell Microbiol 2014 ; 16 : 1004–1013. [CrossRef] [PubMed] [Google Scholar]
  2. Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Science Transl Med 2014 ; 6 : 266. [CrossRef] [PubMed] [Google Scholar]
  3. Al-Asmakh M, Anuar F, Zadjali F, et al. Gut microbial communities modulating brain development and function. Gut Microbes 2012 ; 3 : 366–373. [CrossRef] [PubMed] [Google Scholar]
  4. Janssen AW, Kersten S. The role of the gut microbiota in metabolic health. FASEB J 2015 ; 29 : 3111–3123. [CrossRef] [PubMed] [Google Scholar]
  5. Schnorr SL, Bachner HA. Integrative therapies in anxiety treatment with special emphasis on the gut microbiome. Yale J Biol Med 2016 ; 89 : 397–422. [PubMed] [Google Scholar]
  6. Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002 ; 347 : 911–920. [Google Scholar]
  7. Grosdemange A. Impact du microbiote intestinal sur le système immunitaire de l’enfant. Thèse. Université de Lorraine, Faculté de pharmacie, 2014. [Google Scholar]
  8. Penders J, Thijs C, Vink C, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006; 118 : 511–21. [CrossRef] [PubMed] [Google Scholar]
  9. Blaser MJ. Missing microbes. How the overuse of antibiotics is fueling our modern plagues. New York : Henry Holt and Company, 2014 : 273. [Google Scholar]
  10. Warinner C, Speller C, Collins MJ, Lewis CM Jr. Ancient human microbiomes. J Hum Evol 2015 ; 79 : 125–136. [CrossRef] [PubMed] [Google Scholar]
  11. Hyde ER, Haarmann DP, Petrosino JF, et al. Initial insights into bacterial succession during human decomposition. Int J Legal Med 2014 ; 129 : 661–671. [CrossRef] [PubMed] [Google Scholar]
  12. Hyde ER, Haarmann DP, Lynne AM, et al. The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PLoS One 2013 ; 8 : e77733. [CrossRef] [PubMed] [Google Scholar]
  13. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011 ; 473 : 174–180. [CrossRef] [PubMed] [Google Scholar]
  14. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010 ; 464 : 59–65. [CrossRef] [PubMed] [Google Scholar]
  15. Dutilh BE, Cassman N, McNair K, et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Comm 2014 ; 5 : 4498. [CrossRef] [Google Scholar]
  16. Ziesemer KA, Mann AE, Sankaranarayanan K, et al. Intrinsic challenges in ancient microbiome reconstruction using 16s rRNA gene amplification. Sci Rep 2015 ; 5 : 16498. [CrossRef] [PubMed] [Google Scholar]
  17. Weyrich LS, Duchene S, Soubrier J, et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 2017 ; 544 : 357–361. [CrossRef] [PubMed] [Google Scholar]
  18. Cano RJ, Rivera-Perez J, Toranzos GA, et al. Paleomicrobiology: revealing fecal microbiomes of ancient indigenous cultures. PLoS One 2014 ; 9 : e106833. [CrossRef] [PubMed] [Google Scholar]
  19. Santiago-Rodriguez TM, Fornaciari G, Luciani S et al. Natural mummification of the human gut preserves bacteriophage DNA. FEMS Microbiol Lett 2016; 363 : fnv219. [CrossRef] [PubMed] [Google Scholar]
  20. Santiago-Rodriguez TM, Fornaciari G, Luciani S, et al. Taxonomic and predicted metabolic profiles of the human gut micro biome in pre-Columbian mummies. FEMS Microbiol Ecol 2016; 92 : fiw182. [CrossRef] [PubMed] [Google Scholar]
  21. Benmoussa N, Charpentier C, Mariaggi AA, et al. HPV 16 in squamous cell carcinoma of 19th century tonsils. Lancet Oncol 2016 ; 17 : 477–478. [Google Scholar]
  22. Santiago-Rodriguez TM, Fornaciari G, Luciani S, et al. Gut microbiome of an 11th century AD pre-Columbian Andean mummy. PLoS One 2015 ; 10 : e0138135. [CrossRef] [PubMed] [Google Scholar]
  23. Perry JA, Wright GD. The antibiotic resistance mobilome: searching for the link between environment and clinic. Front Microbiol 2013 ; 4 : 138. [CrossRef] [PubMed] [Google Scholar]
  24. Obregon-Tito A, Tito RY, Metcalf J, et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun 2015 ; 6 : 6505. [CrossRef] [PubMed] [Google Scholar]
  25. Gomez A, Petrzelkova KJ, Burns MB, et al. Gut microbiome of coexisting baAka Pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Rep 2016 ; 14 : 2142–2153. [CrossRef] [PubMed] [Google Scholar]
  26. Lin A, Bik EM, Costello EK, et al. Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States. PLoS One 2013 ; 8 : e53838. [CrossRef] [PubMed] [Google Scholar]
  27. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012 ; 486 : 222–227. [CrossRef] [PubMed] [Google Scholar]
  28. Martinez I, Stegen JC, Maldonado-Gómez MX, et al. The gut microbiota of rural papua new guineans: composition, diversity patterns, and ecological processes. Cell Rep 2015 ; 11 : 527–538. [CrossRef] [PubMed] [Google Scholar]
  29. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010 ; 107 : 14691–14696. [Google Scholar]
  30. Rampelli S, Schnorr SL, Consolandi C, et al. Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. Curr Biol 2015 ; 25 : 1682–1693. [CrossRef] [PubMed] [Google Scholar]
  31. Schnorr SL, Candela M, Rampelli S, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commum 2014 ; 5 : 3654. [CrossRef] [Google Scholar]
  32. Clemente JC, Pehrsson EC, Blaser MJ, et al. The microbiome of uncontacted Amerindians. Sci Adv 2015; 1 : pii: e1500183. [Google Scholar]
  33. Adler CJ, Dobney K, Weyrich LS, et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and industrial revolutions. Nat Genet 2013 ; 45 : 450–455. [Google Scholar]
  34. Parkhill J, Wren BW, Thomson NR, et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 2001 ; 413 : 523–527. [CrossRef] [PubMed] [Google Scholar]
  35. Cooper A, Poinar HN. Ancient DNA: do it right or not at all. Science 2000 ; 289 : 1139. [Google Scholar]
  36. Solozzo C, Fitzhugh WW, Rolando C, Tokarski C. Identification of protein remains in archaeological potsherds by proteomics. Anal Chem 2008 ; 80 : 4590–4597. [CrossRef] [PubMed] [Google Scholar]
  37. Wiktorowicz CJ, Arnold B, Wiktorowiczet JE, et al. Hemorrhagic fever virus, human blood, and tissues in Iron Ages mortuary vessels. J Archaeol Sci 2017 ; 78 : 29–39. [Google Scholar]
  38. Charlier P, Huynh-Charlier I, Munoz O, et al. The microscopic (optical and SEM) examination of dental calculus deposits (DCD). Potential interest in forensic anthropology of a bio-archaeological method. Leg Med (Tokyo) 2010; 12 : 163–71. [CrossRef] [PubMed] [Google Scholar]
  39. Charlier P, Abadie I, Cavard D, Brun L. Ancient calculus egg. Br Dent J 2013 : 489–490. [Google Scholar]
  40. Charlier P, Bouchet F, Weil R, Bonnet B. Schistosomiasis in the mummified viscera of Saint-Louis (1270 AD). Forensic Sci Med Pathol 2015 ; 12 : 113–114. [Google Scholar]
  41. Jin Y, Wu S, Zeng Z, Fu Z. Effects of environmental pollutants on gut microbiota. Environ Pollut 2017 ; 222 : 1–9. [Google Scholar]
  42. Lange K, Buerger M, Stallmach A, Bruns T. Effects of antibiotics on gut microbiota. Dig Dis Sci 2016 ; 34 : 260–268. [Google Scholar]
  43. Müller A, Hussein K. Meta-analysis of teeth from European populations before and after the 18th century reveals a shift towards increased prevalence of caries and tooth loss. Arch Oral Biol 2017 ; 73 : 7–15. [CrossRef] [PubMed] [Google Scholar]
  44. Charlier P. Human oral microbiome crisis at the end of 18th c.? J Brief Ideas 2017; 26 Mar. http://beta.briefideas.org/ideas/3e688fbc491d6d2db77b4035c5ad5b2c. [Google Scholar]
  45. Rascovan N, Drancourt M, Desnues C. Des génomes anciens de Yersinia pestis pour comprendre l’origine et la dissémination des épidémies de peste historiques. Med Sci (Paris) 2016 ; 32 : 681–683. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Aubernon C, Hédouin V, Charabidzé D. Les larves de diptères nécrophages en entomologie médico-légale : une histoire de température. Med Sci (Paris) 2017 ; 33 : 779–783. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Weissenbach J, Sghir A. Microbiotes et métagénoique. Med Sci (Paris) 2016 ; 32 : 937–943. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.