Free Access
Issue |
Med Sci (Paris)
Volume 33, Novembre 2017
Les Cahiers de Myologie
|
|
---|---|---|
Page(s) | 39 - 45 | |
Section | Mise au point | |
DOI | https://doi.org/10.1051/medsci/201733s108 | |
Published online | 15 November 2017 |
- Medicine USNLo. What is precision medicine? April 4, 2017. [Google Scholar]
- Hawgood S, Hook-Barnard IG, O’Brien TC, Yamamoto KR. Precision medicine: Beyond the inflection point. Sci Transl Med 2015; 7 : 300ps17. [CrossRef] [PubMed] [Google Scholar]
- Hood L, Flores M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. Nat Biotechnol 2012 ; 29 : 613–624. [Google Scholar]
- Tie J, Wang Y, Tomasetti C, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 2016; 8 : 346ra92. [CrossRef] [PubMed] [Google Scholar]
- Ghasemi M, Nabipour I, Omrani A, et al. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis. Am J Nucl Med Mol Imaging 2016 ; 6 : 310–327. [PubMed] [Google Scholar]
- Martin SD, Coukos G, Holt RA, Nelson BH. Targeting the undruggable: immunotherapy meets personalized oncology in the genomic era. Ann Oncol 2015 ; 26 : 2367–2374. [PubMed] [Google Scholar]
- Mohebian MR, Marateb HR, Mansourian M, et al. A hybrid computer-aided-diagnosis system for prediction of breast cancer recurrence (HPBCR) using optimized ensemble learning. Comput Struct Biotechnol J 2017 ; 15 : 75–85. [CrossRef] [PubMed] [Google Scholar]
- Beckmann E, Vignaux JJ. Les objets connectés peuvent-ils aider les patients atteints de pathologies neuromusculaires ?. Med Sci (Paris) 2016 ; 32 (hs2) : 22–26. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Hood L, Auffray C. Participatory medicine: a driving force for revolutionizing healthcare. Genome Med 2013 ; 5 : 110. [CrossRef] [PubMed] [Google Scholar]
- Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf Sci Syst 2014 ; 2 : 3. [CrossRef] [PubMed] [Google Scholar]
- Tual M. Comment le « deep learning » révolutionne l’intelligence artificielle. Le Monde 24.07.2015. [Google Scholar]
- Nasr-Esfahani E, Samavi S, Karimi N, et al. Melanoma detection by analysis of clinical images using convolutional neural network. Conf Proc IEEE Eng Med Biol Soc 2016 ; 2016 : 1373–1376. [PubMed] [Google Scholar]
- Cruz-Roa A, Gilmore H, Basavanhally A, et al. Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Sci Rep 2017 ; 7 : 46450. [CrossRef] [PubMed] [Google Scholar]
- Meyer S, Mueller K, Stuke K, et al. Predicting behavioral variant frontotemporal dementia with pattern classification in multi-center structural MRI data. Neuroimage Clin 2017 ; 14 : 656–662. [Google Scholar]
- Saman Sarraf DDD, John A.E. Anderson, Ghassem Tofighi. DeepAD: Alzheimer’s disease classification viadeep convolutional neural networks using MRI and fMRI. Alzheimer’s Disease Neuroimaging Initiativ 2016. [Google Scholar]
- Vandenberghe ME, Scott ML, Scorer PW, et al. Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer. Sci Rep 2017 ; 7 : 45938. [CrossRef] [PubMed] [Google Scholar]
- Masood A, Al-Jumaily A. Semi-advised learning model for skin cancer diagnosis based on histopathalogical images. Conf Proc IEEE Eng Med Biol Soc 2016 ; 2016 : 631–634. [PubMed] [Google Scholar]
- Wang J. Deep learning based diagnostics: unlocking a $16 billion market. Ark Inves, December 2016 (available from: https://ark-invest.com/research/deep-learning-based-diagnostics). [Google Scholar]
- Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep 2016 ; 6 : 26094. [CrossRef] [PubMed] [Google Scholar]
- Densen P. Challenges and opportunities facing medical education. Trans Am Clin Climatol Assoc 2011 ; 122 : 48–58. [PubMed] [Google Scholar]
- Zhao L, Chen J, Chen F, et al. Social media nested epidemic simulation via online semi-supervised deep learning. Proc IEEE Int Conf Data Min 2015 ; 2015 : 639–648. [PubMed] [Google Scholar]
- Wicks P. Could digital patient communities be the launch pad for patient-centric trial design?. Trials 2014 ; 15 : 172. [CrossRef] [PubMed] [Google Scholar]
- Cocos A, Fiks AG, Masino AJ. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts. J Am Med Inform Assoc 2017 ; 24 : 813–821. [CrossRef] [PubMed] [Google Scholar]
- Picton G. Study shows promise in automated reasoning, hypothesis generation over complete medical literature. Baylor College of Medicine, 2014, Aug 25 (Available from: https://www.bcm.edu/news/research/automated-reasoning-hypothesis-generation?cm_mc_uid=46272480081214888855617&cm_mc_sid_50200000=1493398142). [Google Scholar]
- BewellConnect. Santé - Mieux connaître les risques pour mieux les prévenir (Available from: https://bewell-connect.com/sante/). [Google Scholar]
- HIMSS. What is Interoperability? 2013 (available from: http://www.himss.org/library/interoperability-standards/what-is-interoperability). [Google Scholar]
- OMIM Gene Map Statistics [Internet]. Updated September 20th, 2017 (available from: https://www.omim.org/statistics/geneMap). [Google Scholar]
- OMIM Update List [Internet]. 2017 (available from : https://www.omim.org/statistics/update). [Google Scholar]
- AFM-Téléthon. Maladies neuromusculaires 2016 (available from: http://www.afm-telethon.fr/maladies-neuromusculaires-6676). [Google Scholar]
- Donnart A. L’errance de diagnostic-Erradiag, résultats de l’enquête sur l’errance diagnostique: alliances maladies rares (available from : http://www.alliance-maladies-rares.org/lerrance-de-diagnostic/). [Google Scholar]
- Travers Ching DSHA. Opportunities and obstacles for deep learning in biology and medicine. BioRxiv 2017, May 28. [Google Scholar]
- Ingo Schnabel MP. Goal-driven software development. In: Society IC, ed. Proceedings of the 30th Annual IEEE/NASA Software Engineering Workshop, April 24–28, 2006. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.