Free Access
Issue
Med Sci (Paris)
Volume 33, Number 10, Octobre 2017
Page(s) 878 - 886
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173310020
Published online 10 October 2017
  1. Mosmann T, Coffman R. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989 ; 7 : 145–173. [CrossRef] [PubMed] [Google Scholar]
  2. Eyerich S, Eyerich K, Pennino D, et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest 2009 ; 119 : 3573–3585. [PubMed] [Google Scholar]
  3. Zhu J, Yamane H, Paul W. Differentiation of effector CD4 T cell populations. Annu Rev Immunol 2010 ; 28 : 445–489. [CrossRef] [PubMed] [Google Scholar]
  4. Linterman MA, Pierson W, Lee SK, et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat Med 2011 ; 17 : 975–982. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Kometani K, Kurosaki T. Differentiation and maintenance of long-lived plasma cells. Curr Opin Immunol 2015 ; 33 : 64–69. [PubMed] [Google Scholar]
  6. Kurosaki T, Kometani K, Ise W. Memory B cells. Nat Rev Immunol 2015 ; 15 : 149–159. [Google Scholar]
  7. Dogan I, Bertocci B, Vilmont V, et al. Multiple layers of B cell memory with different effector functions. Nat Immunol 2009 ; 10 : 129–129. [Google Scholar]
  8. Zuccarino-catania G V, Sadanand S, Weisel FJ, et al. CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat Immunol 2014 ; 15 : 631–637. [Google Scholar]
  9. Moir S, Fauci AS. Insights into B cells and HIV-specific B-cell responses in HIV-infected individuals. Immunol Rev 2013 ; 254 : 207–224. [CrossRef] [PubMed] [Google Scholar]
  10. Karnowski A, Chevrier S, Belz GT, et al. B and T cells collaborate in antiviral responses via IL-6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1. J Exp Med 2012; 209 : 2049–2064. [CrossRef] [PubMed] [Google Scholar]
  11. Schmitt N, Morita R, Bourdery L, et al. Human dendritic cells induce the differentiation of interleukin-21- producing T follicular helper-like cells through interleukin-12. Immunity 2009 ; 31 : 158–169. [CrossRef] [PubMed] [Google Scholar]
  12. Baumjohann D, Okada T, Ansel KM. Cutting edge: distinct waves of BCL6 expression during T follicular helper cell development. J Immunol 2011 ; 187 : 2089–2092. [CrossRef] [PubMed] [Google Scholar]
  13. Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity 2014 ; 41 : 529–542. [CrossRef] [PubMed] [Google Scholar]
  14. Fazilleau N, Mcheyzer-williams LJ, Rosen H, et al. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat Immunol 2009 ; 10 : 375–384. [Google Scholar]
  15. Choi YS, Kageyama R, Eto D, et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 2011 ; 34 : 932–946. [CrossRef] [PubMed] [Google Scholar]
  16. Nurieva RI, Chung Y, Hwang D, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 2008 ; 29 : 138–149. [CrossRef] [PubMed] [Google Scholar]
  17. Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol 2011 ; 29 : 621–663. [CrossRef] [PubMed] [Google Scholar]
  18. Aloulou M, Carr EJ, Gador M, et al. Follicular regulatory T cells can be specific for the immunizing antigen and derive from naive T cells. Nat Commun 2016 ; 7 : 10579. [CrossRef] [PubMed] [Google Scholar]
  19. Tangye SG, Ma CS, Brink R, et al. The good, the bad and the ugly - TFH cells in human health and disease. Nat Rev Immunol 2013 ; 13 : 412–426. [Google Scholar]
  20. Pantaleo G, Graziosi C, Demarest JF, et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 1993 ; 362 : 355–358. [Google Scholar]
  21. Perreau M, Savoye AL, De Crignis E, et al. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J Exp Med 2013 ; 210 : 143–156. [CrossRef] [PubMed] [Google Scholar]
  22. Kohler SL, Pham MN, Folkvord JM, et al. Germinal center T follicular helper cells are highly permissive to HIV-1 and alter their phenotype during virus replication. J Immunol 2016 ; 196(6) 2711–2722. [CrossRef] [PubMed] [Google Scholar]
  23. Fukazawa Y, Lum R, Okoye A, et al. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nat Med 2015; 21 : 132–139. [CrossRef] [PubMed] [Google Scholar]
  24. Colineau L, Rouers A, Yamamoto T, et al. HIV-infected spleens present altered follicular helper T Cell (Tfh) subsets and skewed B cell maturation. PLoS One 2015 ; 10 : e0140978. [CrossRef] [PubMed] [Google Scholar]
  25. Boritz EA, Darko S, Swaszek L, et al. Multiple origins of virus persistence during natural control of HIV infection. Cell 2016 ; 166 : 1004–1015. [CrossRef] [PubMed] [Google Scholar]
  26. Lindqvist M, Van Lunzen J, Soghoian DZ, et al. Expansion of HIV-specific T follicular helper cells in chronic HIV infection. J Clin Invest 2012 ; 122 : 3271–3280. [CrossRef] [PubMed] [Google Scholar]
  27. Embretson J, Zupancic M, Ribas JL, et al. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 1993 ; 362 : 359–362. [Google Scholar]
  28. Xu H, Wang X, Malam N, et al. Persistent SIV infection drives differentiation, aberrant accumulation, and latent infection of germinal center follicular T helper cells. J Virol 2015; 90 : JVI.02471-15. [Google Scholar]
  29. Petrovas C, Yamamoto T, Gerner MY, et al. CD4 T follicular helper cell dynamics during SIV infection. J Clin Invest 2012 ; 122 : 3281–3294. [CrossRef] [PubMed] [Google Scholar]
  30. Hong JJ, Amancha PK, Rogers K, et al. Spatial alterations between CD4+ T follicular helper, B, and CD8+ T cells during simian immunodeficiency virus infection: T/B cell homeostasis, activation, and potential mechanism for viral escape. J Immunol 2012 ; 188 : 3247–3256. [CrossRef] [PubMed] [Google Scholar]
  31. Moukambi F, Rabezanahary H, Rodrigues V, et al. Early loss of splenic Tfh cells in SIV-Infected rhesus macaques. PLoS Pathog 2015 ; 11 : e1005287. [CrossRef] [PubMed] [Google Scholar]
  32. Hong JJ, Amancha PK, Rogers KA, et al. Early lymphoid responses and germinal center formation correlate with lower viral load set points and better prognosis of simian immunodeficiency virus infection. J Immunol 2014 ; 193 : 797–806. [CrossRef] [PubMed] [Google Scholar]
  33. Ruffin N, Brezar V, Ayinde D, et al. Low SAMHD1 expression following T-cell activation and proliferation renders CD4+ T cells susceptible to HIV-1. Aids 2015 ; 1 : [Google Scholar]
  34. Cubas R, Mudd JC, Savoye A-L, et al. Inadequate T follicular cell help impairs B cell immunity during HIV infection. Nat Med 2013; 19 : 494–499. [CrossRef] [PubMed] [Google Scholar]
  35. Schaerli P, Willimann K, Lang B, et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 2000 ; 192 : 1553–1562. [CrossRef] [PubMed] [Google Scholar]
  36. Morita R, Schmitt N, Bentebibel S-E, et al. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 2011 ; 34 : 108–121. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Chevalier N, Jarrossay D, Ho E, et al. CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses. J Immunol 2011 ; 186 : 5556–5568. [CrossRef] [PubMed] [Google Scholar]
  38. Bossaller L, Burger J, Draeger R, et al. ICOS deficiency is associated with a severe reduction of CXCR5+CD4 germinal center Th cells. J Immunol 2006 ; 177 : 4927–4932. [CrossRef] [PubMed] [Google Scholar]
  39. Schultz BT, Teigler JE, Pissani F, et al. Circulating HIV-specific interleukin-21+CD4+ T cells represent peripheral Tfh cells with antigen-dependent helper functions. Immunity 2016 ; 44 : 167–178. [CrossRef] [PubMed] [Google Scholar]
  40. He J, Tsai LM, Leong YA, et al. Circulating precursor CCR7loPD-1hi CXCR5+ CD4+ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity 2013 ; 39 : 770–781. [CrossRef] [PubMed] [Google Scholar]
  41. Pallikkuth S, Sharkey M, Babic DZ, et al. Peripheral T follicular helper cells are the major HIV reservoir within central memory CD4 T cells in peripheral blood from chronic HIV infected individuals on cART. J Virol 2015; JVI.02883-15. [Google Scholar]
  42. Descours B, Petitjean G, López-Zaragoza J-L, et al. CD32a is a marker of a CD4 T-cell HIV reservoir harbouring replication-competent proviruses. Nature 2017 ; 543 : 564–567. [Google Scholar]
  43. Rerks-Ngarm Supachai, Punnee Pitisuttithum SN, Kaewkungwal Jaranit, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 2009 ; 361 : 2209–2220. [Google Scholar]
  44. Bonsignori M, Pollara J, Moody MA, et al. Antibody-dependent cellular cytotoxicity-mediating antibodies from an HIV-1 vaccine efficacy trial target multiple epitopes and preferentially use the VH1 gene family. J Virol 2012 ; 86 : 11521–11532. [CrossRef] [PubMed] [Google Scholar]
  45. Vargas-inchaustegui DA, Demers A, Julia M, et al. Vaccine induction of lymph node: resident simian immunodeficiency virus Env-specific T follicular helper clls in Rhesus macaques. J Immunol 2016 ; 196 : 1700–1710. [CrossRef] [PubMed] [Google Scholar]
  46. Locci M, Havenar-Daughton C, Landais E, et al. Human circulating PD-1+CXCR3−CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity 2013 ; 39 : 758–769. [CrossRef] [PubMed] [Google Scholar]
  47. Martin-Gayo E, Cronin J, Hickman T, et al. Circulating CXCR5+CXCR3+PD-1lo Tfh-like cells in HIV-1 controllers with neutralizing antibody breadth. JCI Insight 2017 ; 2 : 412–425. [Google Scholar]
  48. Havenar-Daughton C, Carnathan DG, Torrents de la Pena A, et al. Direct probing of germinal center responses reveals immunological features and bottlenecks for neutralizing antibody responses to HIV Env trimer. Cell Rep 2016 ; 17 : 2195–2209. [CrossRef] [PubMed] [Google Scholar]
  49. Koup RA, Douek DC. Vaccine design for CD8 T lymphocyte responses. Cold Spring Harb Perspect Med 2011 ; 1–15. [Google Scholar]
  50. Mouquet H. Tailored immunogens for rationally designed antibody-based HIV-1 vaccines. Trends Immunol 2015 ; 1–3. [Google Scholar]
  51. Mitchison NA. T-cell–B-cell cooperation. Nat Rev Immunol 2004 ; 4 : 1599–1601. [Google Scholar]
  52. Xu H, Wang X, Malam N, et al. Persistent simian immunodeficiency virus infection causes ultimate depletion of follicular Th cells in AIDS. J Immunol 2015 ; 195 : 43517. [Google Scholar]
  53. Haas MK, Levy DN, Folkvord JM, et al. Distinct patterns of Bcl-2 expression occur in R5- and X4-tropic HIV-1-producing lymphoid tissue cells infected ex vivo. AIDS Res Hum Retrovir 2014 ; 30 : 1–7. [Google Scholar]
  54. Chowdhury A, Del Rio PME, Tharp GK, et al. Decreased T follicular regulatory cell/T follicular helper cell (TFH) in simian immunodeficiency virus-infected Rhesus macaques may contribute to accumulation of TFH in chronic infection. J Immunol 2015 ; 195 : 3237–3247. [CrossRef] [PubMed] [Google Scholar]
  55. Marshall NB, Swain SL. Cytotoxic CD4 T cells in antiviral immunity. J Biomed Biotechnol 2011 ; 2011 : 954602. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.