Free Access
Med Sci (Paris)
Volume 33, Number 3, Mars 2017
Page(s) 335 - 339
Section M/S Revues
Published online 03 April 2017
  1. Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014 ; 74 : 2913–2921. [Google Scholar]
  2. Iovanna JL, Marks DL, Fernandez-Zapico ME, Urrutia R. Mechanistic insights into self-reinforcing processes driving abnormal histogenesis during the development of pancreatic cancer. Am J Pathol 2013 ; 182 : 1078–1086. [CrossRef] [PubMed] [Google Scholar]
  3. Lomberk GA, Iovanna J, Urrutia R. The promise of epigenomic therapeutics in pancreatic cancer. Epigenomics 2016 ; 8 : 831–842. [CrossRef] [PubMed] [Google Scholar]
  4. Hezel AF, Kimmelman AC, Stanger BZ, et al. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 2006 ; 20 : 1218–1249. [CrossRef] [PubMed] [Google Scholar]
  5. Tsuchida N, Murugan AK, Grieco M. Kirsten Ras* oncogene: significance of its discovery in human cancer research. Oncotarget 2016 ; 7 : 46717–46733. [CrossRef] [PubMed] [Google Scholar]
  6. Yang S, Wang X, Contino G, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev 2011 ; 25 : 717–729. [CrossRef] [PubMed] [Google Scholar]
  7. Guo JY, Chen HY, Mathew R, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 2011 ; 25 : 460–470. [CrossRef] [PubMed] [Google Scholar]
  8. Kim MJ, Woo SJ, Yoon CH, et al. Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. J Biol Chem 2011 ; 286 : 12924–12932. [CrossRef] [PubMed] [Google Scholar]
  9. Lock R, Roy S, Kenific CM, et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 2011 ; 22 : 165–178. [CrossRef] [PubMed] [Google Scholar]
  10. Mathew R, White E. Autophagy, stress, and cancer metabolism: what doesn’t kill you makes you stronger. Cold Spring Harb Symp Quant Biol 2011 ; 76 : 389–396. [CrossRef] [PubMed] [Google Scholar]
  11. Rosenfeldt MT, O’Prey J, Morton JP, et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature 2013 ; 504 : 296–300. [CrossRef] [PubMed] [Google Scholar]
  12. Yang A, Rajeshkumar NV, Wang X, et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov 2014 ; 4 : 905–913. [CrossRef] [PubMed] [Google Scholar]
  13. Guerra C, Schuhmacher AJ, Canamero M, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 2007 ; 11 : 291–302. [CrossRef] [PubMed] [Google Scholar]
  14. Diakopoulos KN, Lesina M, Wormann S, et al. Impaired autophagy induces chronic atrophic pancreatitis in mice via sex- and nutrition-dependent processes. Gastroenterology 2015 ; 148 : 626–638e17. [CrossRef] [PubMed] [Google Scholar]
  15. Gukovsky I, Gukovskaya AS. Impaired autophagy underlies key pathological responses of acute pancreatitis. Autophagy 2010 ; 6 : 428–429. [CrossRef] [PubMed] [Google Scholar]
  16. Dusetti NJ, Jiang Y, Vaccaro MI, et al. Cloning and expression of the rat vacuole membrane protein 1 (VMP1), a new gene activated in pancreas with acute pancreatitis, which promotes vacuole formation. Biochem Biophys Res Commun 2002 ; 290 : 641–649. [Google Scholar]
  17. Ropolo A, Grasso D, Pardo R, et al. The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. J Biol Chem 2007 ; 282 : 37124–37133. [CrossRef] [PubMed] [Google Scholar]
  18. Calvo-Garrido J, King JS, Munoz-Braceras S, Escalante R. Vmp1 regulates PtdIns3P signaling during autophagosome formation in Dictyostelium discoideum. Traffic 2014 ; 15 : 1235–1246. [CrossRef] [PubMed] [Google Scholar]
  19. Tian Y, Li Z, Hu W, et al. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 2010 ; 141 : 1042–1055. [CrossRef] [PubMed] [Google Scholar]
  20. Nowak J, Archange C, Tardivel-Lacombe J, et al. The TP53INP2 protein is required for autophagy in mammalian cells. Mol Biol Cell 2009 ; 20 : 870–881. [CrossRef] [PubMed] [Google Scholar]
  21. Seillier M, Peuget S, Gayet O, et al. TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death. Cell Death Differ 2012 ; 19 : 1525–1535. [CrossRef] [PubMed] [Google Scholar]
  22. Antonucci L, Fagman JB, Kim JY, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci USA 2015 ; 112 : E6166–E6174. [CrossRef] [Google Scholar]
  23. Grasso D, Ropolo A, Lo Re A, et al. Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death. J Biol Chem 2011 ; 286 : 8308–8324. [CrossRef] [PubMed] [Google Scholar]
  24. Lo Re AE, Fernandez-Barrena MG, Almada LL, et al. Novel AKT1-GLI3-VMP1 pathway mediates KRAS oncogene-induced autophagy in cancer cells. J Biol Chem 2012 ; 287 : 25325–25334. [CrossRef] [PubMed] [Google Scholar]
  25. Loncle C, Molejon MI, Lac S, et al. The pancreatitis-associated protein VMP1, a key regulator of inducible autophagy, promotes Kras(G12D)-mediated pancreatic cancer initiation. Cell Death Dis 2016 ; 7 : e2295. [CrossRef] [PubMed] [Google Scholar]
  26. Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd ed). Autophagy 2016 ; 12 : 1–222. [CrossRef] [PubMed] [Google Scholar]
  27. Koyama-Honda I, Itakura E, Fujiwara TK, Mizushima N. Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site. Autophagy 2013 ; 9 : 1491–1499. [CrossRef] [PubMed] [Google Scholar]
  28. Molejon MI, Ropolo A, Re AL, et al. The VMP1-Beclin 1 interaction regulates autophagy induction. Sci Rep 2013 ; 3 : 1055. [CrossRef] [PubMed] [Google Scholar]
  29. Calvo-Garrido J, Escalante R. Autophagy dysfunction and ubiquitin-positive protein aggregates in Dictyostelium cells lacking Vmp1. Autophagy 2010 ; 6 : 100–109. [CrossRef] [PubMed] [Google Scholar]
  30. Young AR, Narita M, Ferreira M, et al. Autophagy mediates the mitotic senescence transition. Genes Dev 2009 ; 23 : 798–803. [CrossRef] [PubMed] [Google Scholar]
  31. Marino G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 2014 ; 15 : 81–94. [CrossRef] [PubMed] [Google Scholar]
  32. Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005 ; 122 : 927–939. [CrossRef] [PubMed] [Google Scholar]
  33. Sousa CM, Biancur DE, Wang X, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 2016 ; 536 : 479–483. [CrossRef] [PubMed] [Google Scholar]
  34. Yang MC, Wang HC, Hou YC, et al. Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol Cancer 2015 ; 14 : 179. [CrossRef] [PubMed] [Google Scholar]
  35. Ding L, Ma G, Liu Y, et al. Autophagy blockage enhances radiosensitivity of osteosarcoma MG-63 cells in vitro. Clin Lab 2015 ; 61 : 1365–1372. [CrossRef] [PubMed] [Google Scholar]
  36. Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005 ; 5 : 726–734. [Google Scholar]
  37. Salazar M, Carracedo A, Salanueva IJ, et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 2009 ; 119 : 1359–1372. [CrossRef] [PubMed] [Google Scholar]
  38. Lefort S, Joffre C, Kieffer Y, et al. Inhibition of autophagy as a new means of improving chemotherapy efficiency in high-LC3B triple-negative breast cancers. Autophagy 2014 ; 10 : 2122–2142. [CrossRef] [PubMed] [Google Scholar]
  39. Sasaki K, Tsuno NH, Sunami E, et al. Resistance of colon cancer to 5-fluorouracil may be overcome by combination with chloroquine, an in vivo study. Anticancer drugs 2012 ; 23 : 675–682. [CrossRef] [PubMed] [Google Scholar]
  40. Saleem A, Dvorzhinski D, Santanam U, et al. Effect of dual inhibition of apoptosis and autophagy in prostate cancer. Prostate 2012 ; 72 : 1374–1381. [CrossRef] [PubMed] [Google Scholar]
  41. Martinez-Outschoorn UE, Trimmer C, Lin Z, et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle 2010 ; 9 : 3515–3533. [CrossRef] [PubMed] [Google Scholar]
  42. Bellodi C, Lidonnici MR, Hamilton A, et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 2009 ; 119 : 1109–1123. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.