Free Access
Med Sci (Paris)
Volume 33, Number 3, Mars 2017
Page(s) 319 - 327
Section M/S Revues
Published online 03 April 2017
  1. Van Bavel CC, Dieker JW, Kroeze Y, et al. Apoptosis-induced histone H3 methylation is targeted by autoantibodies in systemic lupus erythematosus. Ann Rheum Dis 2011 ; 70 : 201–207. [CrossRef] [PubMed] [Google Scholar]
  2. Dieker JW, Iglesias-Guimarais V, Décossas M, et al. Early apoptotic reorganization of spliceosomal proteins involves caspases. CAD and rearrangement of NuMA. Traffic 2012 ; 13 : 257–272. [Google Scholar]
  3. Muller S, Radic M. Oxidation and mitochondrial origin of NET DNA in the pathogenesis of lupus. Nature Med 2016 ; 22 : 126–127. [CrossRef] [Google Scholar]
  4. Lehmann PV, Forsthuber T, Miller A, Sercarz EE. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 1992 ; 358 : 155–157. [CrossRef] [PubMed] [Google Scholar]
  5. Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases : implications for immunotherapy. Nat Rev Immunol 2002 ; 2 : 85–95. [CrossRef] [PubMed] [Google Scholar]
  6. Monneaux F, Muller S. Epitope spreading in systemic lupus erythematosus : identification of triggering peptide sequences. Arthritis Rheum 2002 ; 46 : 1430–1438. [CrossRef] [PubMed] [Google Scholar]
  7. Monneaux F, Parietti V, Briand JP, Muller S. Importance of spliceosomal RNP1 motif for intermolecular T-B cell spreading and tolerance restoration in lupus. Arthritis Res Ther 2007 ; 9 : R111. [CrossRef] [PubMed] [Google Scholar]
  8. Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res 2014 ; 24 : 24–41. [CrossRef] [PubMed] [Google Scholar]
  9. Subramani S, Malhotra V. Non-autophagic roles of autophagy-related proteins. EMBO Rep 2013 ; 14 : 143–151. [CrossRef] [PubMed] [Google Scholar]
  10. Arnold J, Murera D, Arbogast F, et al. L’autophagie et l’homéostasie des LT et B : bien recycler pour un développement durable. Med Sci (Paris) 2016 ; 32 : 281–289. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Valdor R, Mocholi E, Botbol Y, et al. Chaperone-mediated autophagy regulates T cell responses through targeted degradation of negative regulators of T cell activation. Nat Immunol 2014 ; 15 : 1046–1054. [CrossRef] [PubMed] [Google Scholar]
  12. Botbol Y, Guerrero-Ros I, Macian F. Key roles of autophagy in regulating T-cell function. Eur J Immunol 2016 ; 46 : 1326–1334. [CrossRef] [PubMed] [Google Scholar]
  13. Pua HH, Dzhagalov I, Chuck M, et al. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 2007 ; 204 : 25–31. [CrossRef] [PubMed] [Google Scholar]
  14. Stephenson LM, Miller BC, Ng A, et al. Identification of Atg5-dependent transcriptional changes and increases in mitochondrial mass in Atg5-deficient T lymphocytes. Autophagy 2009 ; 5 : 625–635. [CrossRef] [PubMed] [Google Scholar]
  15. Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol 2013 ; 13 : 722–737. [CrossRef] [PubMed] [Google Scholar]
  16. Ma Y, Galluzzi L, Zitvogel L, Kroemer G. Autophagy and cellular immune responses. Immunity 2013 ; 39 : 211–227. [CrossRef] [PubMed] [Google Scholar]
  17. Gros F, Muller S. Pharmacological regulators of autophagy and their link with modulators of lupus disease. Brit. J. Pharmacol. 2014 ; 171 : 4337–4359. [CrossRef] [Google Scholar]
  18. Arnold J, Murera D, Arbogast F, et al. Autophagy is dispensable for B cell development but essential for humoral autoimmune responses. Cell Death Differ 2016 ; 23 : 853–864. [CrossRef] [PubMed] [Google Scholar]
  19. Harley JB, Alarcon-Riquelme ME, Criswell LA, et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 2008 ; 40 : 204–210. [Google Scholar]
  20. Han JW, Zheng HF, Cui Y, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 2009 ; 41 : 1234–1237. [Google Scholar]
  21. Lessard CJ, Sajuthi S, Zhao J, et al. Identification of a Systemic lupus erythematosus risk locus spanning ATG16L2, FCHSD2, and P2RY2 in Koreans. Arthritis Rheum 2016 ; 68 : 1197–1209. [Google Scholar]
  22. Gros F, Arnold J, Page N, et al. Macroautophagy is deregulated in murine and human lupus T lymphocytes. Autophagy 2012 ; 8 : 1113–1123. [CrossRef] [PubMed] [Google Scholar]
  23. Alessandri C, Barbati C, Vacirca D, et al. T lymphocytes from patients with systemic lupus erythematosus are resistant to induction of autophagy. FASEB J 2012 ; 26 : 4722–4732. [CrossRef] [PubMed] [Google Scholar]
  24. Clarke AJ, Ellinghaus U, Cortini A, et al. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Ann Rheum Dis 2015 ; 74 : 912–920. [CrossRef] [PubMed] [Google Scholar]
  25. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell 2010 ; 140 : 313–326. [CrossRef] [PubMed] [Google Scholar]
  26. Klionsky DJ, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2016 ; 12 : 1–222. [CrossRef] [PubMed] [Google Scholar]
  27. Cuervo AM, Wong E. Chaperone-mediated autophagy : roles in disease and aging. Cell Res 2014 ; 24 : 92–104. [CrossRef] [PubMed] [Google Scholar]
  28. Macri C, Wang F, Tasset I, et al. Modulation of deregulated chaperone-mediated autophagy by a phosphopeptide. Autophagy 2015 ; 11 : 472–486. [CrossRef] [PubMed] [Google Scholar]
  29. Nedjic J, Aichinger M, Emmerich J, et al. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 2008 ; 455 : 396–400. [CrossRef] [PubMed] [Google Scholar]
  30. Dengjel J, Schoor O, Fischer R, et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci USA 2005 ; 102 : 7922–7927. [CrossRef] [Google Scholar]
  31. Münz C. Autophagy proteins in antigen processing for presentation on MHC molecules. Immunol Rev 2016 ; 272 : 17–27. [CrossRef] [PubMed] [Google Scholar]
  32. Deffit SN, Blum JS. A central role for HSC70 in regulating antigen trafficking and MHC class II presentation. Mol Immunol 2015 ; 68 : 85–88. [Google Scholar]
  33. Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 2015 ; 15 : 203–216. [CrossRef] [PubMed] [Google Scholar]
  34. Shibutani ST, Saitoh T, Nowag H, et al. Autophagy and autophagy-related proteins in the immune system. Nat Immunol 2015 ; 16 : 1014–1024. [CrossRef] [PubMed] [Google Scholar]
  35. Blander JM, Medzhitov R. Regulation of phagosome maturation by signals from toll-like receptors. Science 2004 ; 304 : 1014–1018. [Google Scholar]
  36. Delamarre L, Couture R, Mellman I, Trombetta ES. Enhancing immunogenicity by limiting susceptibility to lysosomal proteolysis. J Exp Med 2006 ; 203 : 2049–2055. [CrossRef] [PubMed] [Google Scholar]
  37. Moffat JM, Mintern JD, Villadangos JA. Control of MHC II antigen presentation by ubiquitination. Curr Opin Immunol 2013 ; 25 : 109–114. [CrossRef] [PubMed] [Google Scholar]
  38. Cho KJ, Roche PA. Regulation of MHC Class II-Peptide Complex Expression by Ubiquitination. Front Immunol 2013 ; 4 : 369. [PubMed] [Google Scholar]
  39. Martinez J, Almendinger J, Oberst A, et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci USA 2011 ; 108 : 17396–17401. [CrossRef] [Google Scholar]
  40. Romao S, Gasser N, Becker AC, et al. Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. J Cell Biol 2013 ; 203 : 757–766. [CrossRef] [PubMed] [Google Scholar]
  41. Martinez J, Cunha LD, Park S, et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature 2016 ; 533 : 115–119. [CrossRef] [PubMed] [Google Scholar]
  42. Majai G, Kiss E, Tarr T, et al. Decreased apopto-phagocytic gene expression in the macrophages of systemic lupus erythematosus patients. Lupus 2014 ; 23 : 133–145. [CrossRef] [PubMed] [Google Scholar]
  43. Page N, Gros F, Schall N, et al. HSC70 blockade by the therapeutic peptide P140 affects autophagic processes and endogenous MHCII presentation in murine lupus. Ann Rheum Dis 2011 ; 70 : 837–843. [CrossRef] [PubMed] [Google Scholar]
  44. Renna M, Jimenez-Sanchez M, Sarkar S, Rubinsztein DC. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J Biol Chem 2010 ; 285 : 11061–11067. [CrossRef] [PubMed] [Google Scholar]
  45. Fleming A, Noda T, Yoshimori T, Rubinsztein DC. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 2011 ; 7 : 9–17. [Google Scholar]
  46. Levine B, Packer M, Codogno P. Development of autophagy inducers in clinical medicine. J Clin Invest 2015 ; 125 : 14–24. [CrossRef] [PubMed] [Google Scholar]
  47. Rubinsztein DC, Bento CF, Deretic V. Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J Exp Med 2015 ; 212 : 979–990. [CrossRef] [PubMed] [Google Scholar]
  48. Monneaux F, Lozano JM, Patarroyo ME, et al. T cell recognition and therapeutic effects of a phosphorylated synthetic peptide of the 70K snRNP protein administered in MRL/lpr lupus mice. Eur J Immunol 2003 ; 33 : 287–296. [CrossRef] [PubMed] [Google Scholar]
  49. Dieker J, Cisterna B, Monneaux F, et al. Apoptosis changes the phosphorylation status and subcellular localization of the spliceosomal autoantigen U1–70K. Cell Death Diff 2008 ; 15 : 793–804. [CrossRef] [Google Scholar]
  50. Page N, Schall N, Strub JM, et al. The spliceosomal phosphopeptide P140 controls the lupus disease by interacting with the HSC70 protein and via a mechanism mediated by γδ T cells. PloS One 2009 ; 4 : e5273. [CrossRef] [PubMed] [Google Scholar]
  51. Bozzacco L, Yu H, Zebroski HA, et al. Mass spectrometry analysis and quantitation of peptides presented on the MHC II molecules of mouse spleen dendritic cells. J Proteome Res 2011 ; 10 : 5016–5030. [CrossRef] [PubMed] [Google Scholar]
  52. Dengjel J, Høyer-Hansen M, Nielsen MO, et al. Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens. Mol Cell Proteomics 2012 ; 11 : M111.014035. [CrossRef] [PubMed] [Google Scholar]
  53. Mathew R, Khor S, Hackett SR, et al. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol Cell 2014 ; 55 : 916–930. [CrossRef] [PubMed] [Google Scholar]
  54. Schall N, Wang F, Dali H et al. Chaperone-mediated autophagy down-regulation normalizes the immune responses in lupus. 2017 (en révision). [Google Scholar]
  55. Zimmer R, Scherbarth HR, Rillo OL, et al. Lupuzor/P140 peptide in patients with systemic lupus erythematosus : a randomised, double-blind, placebo-controlled phase IIb clinical trial. Ann Rheum Dis 2013 ; 72 : 1830–1835. [CrossRef] [PubMed] [Google Scholar]
  56. Sarkar S, Davies JE, Huang Z, et al. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 2007 ; 282 : 5641–5652. [CrossRef] [PubMed] [Google Scholar]
  57. Mardones P, Rubinsztein DC, Hetz C. Mystery solved : Trehalose kickstarts autophagy by blocking glucose transport. Sci Signal 2016 ; 9 : fs2. [Google Scholar]
  58. Muller S, Wallace DJ. The importance of implementing proper selection of excipients in lupus clinical trials. Lupus 2014 ; 23 : 609–614. [CrossRef] [PubMed] [Google Scholar]
  59. Schall N, Muller S. Resetting the autoreactive immune system with a therapeutic peptide in lupus. Lupus 2015 ; 24 : 412–418. [CrossRef] [PubMed] [Google Scholar]
  60. Dragin N, Le Panse R, Berrih-Aknin S. Predisposition aux pathologies auto-immunes : les hommes ne manquent pas d'Aire. Med Sci (Paris) 2017 ; 33 : 169–175. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.