Free Access
Issue
Med Sci (Paris)
Volume 33, Number 3, Mars 2017
Autophagie
Page(s) 231 - 237
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173303008
Published online 03 April 2017
  1. Yonashiro R, Ishido S, Kyo S, et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J 2006 ; 25 : 3618–3626. [CrossRef] [PubMed] [Google Scholar]
  2. Margineantu DH, Emerson CB, Diaz D, et al. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS One 2007 ; 2 : e1066. [CrossRef] [PubMed] [Google Scholar]
  3. Lehmann G, Ziv T, Braten O, et al. Ubiquitination of specific mitochondrial matrix proteins. Biochem Biophys Res Commun 2016 ; 475 : 13–18. [CrossRef] [PubMed] [Google Scholar]
  4. Lehmann G, Udasin RG, Ciechanover A. On the linkage between the ubiquitin-proteasome system and the mitochondria. Biochem Biophys Res Commun 2016 ; 473 : 80–86. [CrossRef] [PubMed] [Google Scholar]
  5. Gallagher LE, Williamson LE, Chan EY. Advances in autophagy regulatory mechanisms. Cells 2016 ; 5 : pii: E24. [CrossRef] [PubMed] [Google Scholar]
  6. Levine B, Packer M, Codogno P. Development of autophagy inducers in clinical medicine. J Clin Invest 2015 ; 125 : 14–24. [CrossRef] [PubMed] [Google Scholar]
  7. Stolz A. Andreas Ernst A, Dikic I. Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 2014 ; 16 : 495–501. [CrossRef] [PubMed] [Google Scholar]
  8. Kissová I, Deffieu M, Manon S, et al. Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem 2004 ; 279 : 39068–39074. [CrossRef] [PubMed] [Google Scholar]
  9. Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 2005 ; 8 : 3–5. [CrossRef] [PubMed] [Google Scholar]
  10. Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 2007 ; 462 : 245–253. [CrossRef] [PubMed] [Google Scholar]
  11. Clark IE, Dodson MW, Jiang C, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 2006 ; 441 : 1162–1166. [CrossRef] [PubMed] [Google Scholar]
  12. Park J, Lee SB, Lee S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006 ; 441 : 1157–1161. [CrossRef] [PubMed] [Google Scholar]
  13. Yang Y, Gehrke S, Imai Y, et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci USA 2006 ; 103 : 10793–10798. [CrossRef] [Google Scholar]
  14. Narendra D, Tanaka A, Suen DF, et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008 ; 183 : 795–803. [CrossRef] [PubMed] [Google Scholar]
  15. Matsuda N, Sato S, Shiba K, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 2010 ; 189 : 211–221. [CrossRef] [PubMed] [Google Scholar]
  16. Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 2010 ; 8 : e1000298. [CrossRef] [PubMed] [Google Scholar]
  17. Orvedahl A, Sumpter R, Jr, Xiao G, et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 2011 ; 480 : 480–487. [CrossRef] [PubMed] [Google Scholar]
  18. Lefebvre V, Du Q, Baird S, et al. Genome-wide RNAi screen identifies ATPase inhibitory factor 1 (ATPIF1) as essential for PARK2 recruitment and mitophagy. Autophagy 2013 ; 9 : 1770–1779. [CrossRef] [PubMed] [Google Scholar]
  19. Hasson SA, Kane LA, Yamano K, et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 2013 ; 504 : 291–295. [CrossRef] [PubMed] [Google Scholar]
  20. Durcan TM, Tang MY, Pérusse JR, et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J 2014 ; 33 : 2473–2491. [CrossRef] [PubMed] [Google Scholar]
  21. Bringol B, Tea JS, Phu L, et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 2014 ; 510 : 370–375. [CrossRef] [PubMed] [Google Scholar]
  22. Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015 ; 524 : 309–314. [CrossRef] [PubMed] [Google Scholar]
  23. Richter B, Sliter DA, Herhaus L, et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci USA 2016 ; 113 : 4039–4044. [CrossRef] [Google Scholar]
  24. Twig G, Elorza A, Molina AJ, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 2008 ; 27 : 433–446. [CrossRef] [PubMed] [Google Scholar]
  25. Gomes LC. Di Benedetto G and Scorrano L During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 2011 ; 13 : 589–598. [CrossRef] [PubMed] [Google Scholar]
  26. Rambold AS, Kostelecky B. Elia N and Lippincott-Schwartz J Tubular networkformation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA 2011 ; 108 : 10190–10195. [CrossRef] [Google Scholar]
  27. Chen M, Chen ZH, Wang YY, et al. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy 2016 ; 12 : 1–14. [CrossRef] [PubMed] [Google Scholar]
  28. Yamashita SI, Jin X, Furukawa K, et al. Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy. J Cell Biol 2016 ; 215 : 649–655. [CrossRef] [PubMed] [Google Scholar]
  29. Liu L, Feng D, Chen G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 2012 ; 14 : 177–185. [CrossRef] [PubMed] [Google Scholar]
  30. Novak I, Kirkin V, McEwan DG, et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 2010 ; 11 : 45–51. [CrossRef] [PubMed] [Google Scholar]
  31. Zhu Y, Massen S, Terenzio M, et al. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem 2013 ; 288 : 1099–1113. [CrossRef] [PubMed] [Google Scholar]
  32. Murakawa T, Yamaguchi O, Hashimoto A, et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun 2015 ; 6 : 7527–7541. [CrossRef] [PubMed] [Google Scholar]
  33. Kanki T, Wang K, Cao Y, et al. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 2009 ; 17 : 98–109. [CrossRef] [PubMed] [Google Scholar]
  34. Okamoto K, Kondo-Okamoto N, Ohsumi Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 2009 ; 17 : 87–97. [CrossRef] [PubMed] [Google Scholar]
  35. Schweers RL, Zhang J, Randall MS, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 2007 ; 104 : 19500–19505. [CrossRef] [Google Scholar]
  36. Sandoval H, Thiagarajan P, Dasgupta SK, et al. Essential role for NIX in autophagic maturation of erythroid cells. Nature 2008 ; 454 : 232–235. [CrossRef] [PubMed] [Google Scholar]
  37. Strappazzon F, Nazio F, Corrado M, et al. AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Diff 2015 ; 22 : 419–432. [CrossRef] [Google Scholar]
  38. Chu CT, Ji J, Dagda RK, et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 2013 ; 15 : 1197–1205. [CrossRef] [PubMed] [Google Scholar]
  39. Ding WX, Ni HM, Li M, et al. Two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-Ubiquitin-p62-mediated mitochondrial priming. J Biol Chem 2010 ; 285 : 27879–27890. [CrossRef] [PubMed] [Google Scholar]
  40. Gao F, Chen D, Si J, et al. The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum Mol Genet 2015 ; 24 : 2528–2538. [CrossRef] [PubMed] [Google Scholar]
  41. Soubannier V, McLelland GL, Zunino R, et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr Biol 2012 ; 22 : 135–141. [CrossRef] [PubMed] [Google Scholar]
  42. Soubannier V, Rippstein P, Kaufman BA, et al. Reconstitution of mitochondrial derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLoS One 2012 ; 7 : e52830. [CrossRef] [PubMed] [Google Scholar]
  43. Sugiura A, McLelland GL, Fon EA, et al. A new pathway for mitochondrial quality control: mitochondrial-derived vesicle. EMBO J 2014 ; 33 : 2142–2156. [CrossRef] [PubMed] [Google Scholar]
  44. Hughes AL, Hughes CE, Henderson KA, et al. Selective sorting and destruction of mitochondrial proteins in aged yeast. Elife 2016 ; 5 : pii: e13943. [CrossRef] [PubMed] [Google Scholar]
  45. Katayama H, Kogure T, Mizushima N, et al. A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol 2011 ; 18 : 1042–1052. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.